Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > thlbasOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of thlbas 21007 as of 11-Nov-2024. Base set of the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
thlval.k | ⊢ 𝐾 = (toHL‘𝑊) |
thlbas.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
Ref | Expression |
---|---|
thlbasOLD | ⊢ 𝐶 = (Base‘𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thlbas.c | . . . . . 6 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
2 | 1 | fvexi 6839 | . . . . 5 ⊢ 𝐶 ∈ V |
3 | eqid 2736 | . . . . . 6 ⊢ (toInc‘𝐶) = (toInc‘𝐶) | |
4 | 3 | ipobas 18346 | . . . . 5 ⊢ (𝐶 ∈ V → 𝐶 = (Base‘(toInc‘𝐶))) |
5 | 2, 4 | ax-mp 5 | . . . 4 ⊢ 𝐶 = (Base‘(toInc‘𝐶)) |
6 | baseid 17012 | . . . . 5 ⊢ Base = Slot (Base‘ndx) | |
7 | 1re 11076 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
8 | 1nn 12085 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
9 | 1nn0 12350 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
10 | 1lt10 12677 | . . . . . . . 8 ⊢ 1 < ;10 | |
11 | 8, 9, 9, 10 | declti 12576 | . . . . . . 7 ⊢ 1 < ;11 |
12 | 7, 11 | ltneii 11189 | . . . . . 6 ⊢ 1 ≠ ;11 |
13 | basendx 17018 | . . . . . . 7 ⊢ (Base‘ndx) = 1 | |
14 | ocndx 17188 | . . . . . . 7 ⊢ (oc‘ndx) = ;11 | |
15 | 13, 14 | neeq12i 3007 | . . . . . 6 ⊢ ((Base‘ndx) ≠ (oc‘ndx) ↔ 1 ≠ ;11) |
16 | 12, 15 | mpbir 230 | . . . . 5 ⊢ (Base‘ndx) ≠ (oc‘ndx) |
17 | 6, 16 | setsnid 17007 | . . . 4 ⊢ (Base‘(toInc‘𝐶)) = (Base‘((toInc‘𝐶) sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
18 | 5, 17 | eqtri 2764 | . . 3 ⊢ 𝐶 = (Base‘((toInc‘𝐶) sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
19 | thlval.k | . . . . 5 ⊢ 𝐾 = (toHL‘𝑊) | |
20 | eqid 2736 | . . . . 5 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
21 | 19, 1, 3, 20 | thlval 21006 | . . . 4 ⊢ (𝑊 ∈ V → 𝐾 = ((toInc‘𝐶) sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
22 | 21 | fveq2d 6829 | . . 3 ⊢ (𝑊 ∈ V → (Base‘𝐾) = (Base‘((toInc‘𝐶) sSet 〈(oc‘ndx), (ocv‘𝑊)〉))) |
23 | 18, 22 | eqtr4id 2795 | . 2 ⊢ (𝑊 ∈ V → 𝐶 = (Base‘𝐾)) |
24 | base0 17014 | . . 3 ⊢ ∅ = (Base‘∅) | |
25 | fvprc 6817 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (ClSubSp‘𝑊) = ∅) | |
26 | 1, 25 | eqtrid 2788 | . . 3 ⊢ (¬ 𝑊 ∈ V → 𝐶 = ∅) |
27 | fvprc 6817 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (toHL‘𝑊) = ∅) | |
28 | 19, 27 | eqtrid 2788 | . . . 4 ⊢ (¬ 𝑊 ∈ V → 𝐾 = ∅) |
29 | 28 | fveq2d 6829 | . . 3 ⊢ (¬ 𝑊 ∈ V → (Base‘𝐾) = (Base‘∅)) |
30 | 24, 26, 29 | 3eqtr4a 2802 | . 2 ⊢ (¬ 𝑊 ∈ V → 𝐶 = (Base‘𝐾)) |
31 | 23, 30 | pm2.61i 182 | 1 ⊢ 𝐶 = (Base‘𝐾) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 Vcvv 3441 ∅c0 4269 〈cop 4579 ‘cfv 6479 (class class class)co 7337 1c1 10973 ;cdc 12538 sSet csts 16961 ndxcnx 16991 Basecbs 17009 occoc 17067 toInccipo 18342 ocvcocv 20971 ClSubSpccss 20972 toHLcthl 20973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-7 12142 df-8 12143 df-9 12144 df-n0 12335 df-z 12421 df-dec 12539 df-uz 12684 df-fz 13341 df-struct 16945 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-tset 17078 df-ple 17079 df-ocomp 17080 df-ipo 18343 df-thl 20976 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |