Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > thlbasOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of thlbas 20950 as of 11-Nov-2024. Base set of the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
thlval.k | ⊢ 𝐾 = (toHL‘𝑊) |
thlbas.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
Ref | Expression |
---|---|
thlbasOLD | ⊢ 𝐶 = (Base‘𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thlbas.c | . . . . . 6 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
2 | 1 | fvexi 6818 | . . . . 5 ⊢ 𝐶 ∈ V |
3 | eqid 2736 | . . . . . 6 ⊢ (toInc‘𝐶) = (toInc‘𝐶) | |
4 | 3 | ipobas 18298 | . . . . 5 ⊢ (𝐶 ∈ V → 𝐶 = (Base‘(toInc‘𝐶))) |
5 | 2, 4 | ax-mp 5 | . . . 4 ⊢ 𝐶 = (Base‘(toInc‘𝐶)) |
6 | baseid 16964 | . . . . 5 ⊢ Base = Slot (Base‘ndx) | |
7 | 1re 11025 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
8 | 1nn 12034 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
9 | 1nn0 12299 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
10 | 1lt10 12626 | . . . . . . . 8 ⊢ 1 < ;10 | |
11 | 8, 9, 9, 10 | declti 12525 | . . . . . . 7 ⊢ 1 < ;11 |
12 | 7, 11 | ltneii 11138 | . . . . . 6 ⊢ 1 ≠ ;11 |
13 | basendx 16970 | . . . . . . 7 ⊢ (Base‘ndx) = 1 | |
14 | ocndx 17140 | . . . . . . 7 ⊢ (oc‘ndx) = ;11 | |
15 | 13, 14 | neeq12i 3008 | . . . . . 6 ⊢ ((Base‘ndx) ≠ (oc‘ndx) ↔ 1 ≠ ;11) |
16 | 12, 15 | mpbir 230 | . . . . 5 ⊢ (Base‘ndx) ≠ (oc‘ndx) |
17 | 6, 16 | setsnid 16959 | . . . 4 ⊢ (Base‘(toInc‘𝐶)) = (Base‘((toInc‘𝐶) sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
18 | 5, 17 | eqtri 2764 | . . 3 ⊢ 𝐶 = (Base‘((toInc‘𝐶) sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
19 | thlval.k | . . . . 5 ⊢ 𝐾 = (toHL‘𝑊) | |
20 | eqid 2736 | . . . . 5 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
21 | 19, 1, 3, 20 | thlval 20949 | . . . 4 ⊢ (𝑊 ∈ V → 𝐾 = ((toInc‘𝐶) sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
22 | 21 | fveq2d 6808 | . . 3 ⊢ (𝑊 ∈ V → (Base‘𝐾) = (Base‘((toInc‘𝐶) sSet 〈(oc‘ndx), (ocv‘𝑊)〉))) |
23 | 18, 22 | eqtr4id 2795 | . 2 ⊢ (𝑊 ∈ V → 𝐶 = (Base‘𝐾)) |
24 | base0 16966 | . . 3 ⊢ ∅ = (Base‘∅) | |
25 | fvprc 6796 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (ClSubSp‘𝑊) = ∅) | |
26 | 1, 25 | eqtrid 2788 | . . 3 ⊢ (¬ 𝑊 ∈ V → 𝐶 = ∅) |
27 | fvprc 6796 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (toHL‘𝑊) = ∅) | |
28 | 19, 27 | eqtrid 2788 | . . . 4 ⊢ (¬ 𝑊 ∈ V → 𝐾 = ∅) |
29 | 28 | fveq2d 6808 | . . 3 ⊢ (¬ 𝑊 ∈ V → (Base‘𝐾) = (Base‘∅)) |
30 | 24, 26, 29 | 3eqtr4a 2802 | . 2 ⊢ (¬ 𝑊 ∈ V → 𝐶 = (Base‘𝐾)) |
31 | 23, 30 | pm2.61i 182 | 1 ⊢ 𝐶 = (Base‘𝐾) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 Vcvv 3437 ∅c0 4262 〈cop 4571 ‘cfv 6458 (class class class)co 7307 1c1 10922 ;cdc 12487 sSet csts 16913 ndxcnx 16943 Basecbs 16961 occoc 17019 toInccipo 18294 ocvcocv 20914 ClSubSpccss 20915 toHLcthl 20916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-nn 12024 df-2 12086 df-3 12087 df-4 12088 df-5 12089 df-6 12090 df-7 12091 df-8 12092 df-9 12093 df-n0 12284 df-z 12370 df-dec 12488 df-uz 12633 df-fz 13290 df-struct 16897 df-sets 16914 df-slot 16932 df-ndx 16944 df-base 16962 df-tset 17030 df-ple 17031 df-ocomp 17032 df-ipo 18295 df-thl 20919 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |