MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppccofval Structured version   Visualization version   GIF version

Theorem oppccofval 17668
Description: Composition in the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
oppcco.b 𝐡 = (Baseβ€˜πΆ)
oppcco.c Β· = (compβ€˜πΆ)
oppcco.o 𝑂 = (oppCatβ€˜πΆ)
oppcco.x (πœ‘ β†’ 𝑋 ∈ 𝐡)
oppcco.y (πœ‘ β†’ π‘Œ ∈ 𝐡)
oppcco.z (πœ‘ β†’ 𝑍 ∈ 𝐡)
Assertion
Ref Expression
oppccofval (πœ‘ β†’ (βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜π‘‚)𝑍) = tpos (βŸ¨π‘, π‘ŒβŸ© Β· 𝑋))

Proof of Theorem oppccofval
Dummy variables 𝑧 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppcco.x . . . . 5 (πœ‘ β†’ 𝑋 ∈ 𝐡)
2 elfvex 6922 . . . . . 6 (𝑋 ∈ (Baseβ€˜πΆ) β†’ 𝐢 ∈ V)
3 oppcco.b . . . . . 6 𝐡 = (Baseβ€˜πΆ)
42, 3eleq2s 2845 . . . . 5 (𝑋 ∈ 𝐡 β†’ 𝐢 ∈ V)
5 eqid 2726 . . . . . 6 (Hom β€˜πΆ) = (Hom β€˜πΆ)
6 oppcco.c . . . . . 6 Β· = (compβ€˜πΆ)
7 oppcco.o . . . . . 6 𝑂 = (oppCatβ€˜πΆ)
83, 5, 6, 7oppcval 17664 . . . . 5 (𝐢 ∈ V β†’ 𝑂 = ((𝐢 sSet ⟨(Hom β€˜ndx), tpos (Hom β€˜πΆ)⟩) sSet ⟨(compβ€˜ndx), (𝑒 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’)))⟩))
91, 4, 83syl 18 . . . 4 (πœ‘ β†’ 𝑂 = ((𝐢 sSet ⟨(Hom β€˜ndx), tpos (Hom β€˜πΆ)⟩) sSet ⟨(compβ€˜ndx), (𝑒 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’)))⟩))
109fveq2d 6888 . . 3 (πœ‘ β†’ (compβ€˜π‘‚) = (compβ€˜((𝐢 sSet ⟨(Hom β€˜ndx), tpos (Hom β€˜πΆ)⟩) sSet ⟨(compβ€˜ndx), (𝑒 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’)))⟩)))
11 ovex 7437 . . . 4 (𝐢 sSet ⟨(Hom β€˜ndx), tpos (Hom β€˜πΆ)⟩) ∈ V
123fvexi 6898 . . . . . 6 𝐡 ∈ V
1312, 12xpex 7736 . . . . 5 (𝐡 Γ— 𝐡) ∈ V
1413, 12mpoex 8062 . . . 4 (𝑒 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’))) ∈ V
15 ccoid 17366 . . . . 5 comp = Slot (compβ€˜ndx)
1615setsid 17148 . . . 4 (((𝐢 sSet ⟨(Hom β€˜ndx), tpos (Hom β€˜πΆ)⟩) ∈ V ∧ (𝑒 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’))) ∈ V) β†’ (𝑒 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’))) = (compβ€˜((𝐢 sSet ⟨(Hom β€˜ndx), tpos (Hom β€˜πΆ)⟩) sSet ⟨(compβ€˜ndx), (𝑒 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’)))⟩)))
1711, 14, 16mp2an 689 . . 3 (𝑒 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’))) = (compβ€˜((𝐢 sSet ⟨(Hom β€˜ndx), tpos (Hom β€˜πΆ)⟩) sSet ⟨(compβ€˜ndx), (𝑒 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’)))⟩))
1810, 17eqtr4di 2784 . 2 (πœ‘ β†’ (compβ€˜π‘‚) = (𝑒 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’))))
19 simprr 770 . . . . 5 ((πœ‘ ∧ (𝑒 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ 𝑧 = 𝑍)
20 simprl 768 . . . . . . 7 ((πœ‘ ∧ (𝑒 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ 𝑒 = βŸ¨π‘‹, π‘ŒβŸ©)
2120fveq2d 6888 . . . . . 6 ((πœ‘ ∧ (𝑒 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (2nd β€˜π‘’) = (2nd β€˜βŸ¨π‘‹, π‘ŒβŸ©))
22 oppcco.y . . . . . . . 8 (πœ‘ β†’ π‘Œ ∈ 𝐡)
2322adantr 480 . . . . . . 7 ((πœ‘ ∧ (𝑒 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ π‘Œ ∈ 𝐡)
24 op2ndg 7984 . . . . . . 7 ((𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (2nd β€˜βŸ¨π‘‹, π‘ŒβŸ©) = π‘Œ)
251, 23, 24syl2an2r 682 . . . . . 6 ((πœ‘ ∧ (𝑒 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (2nd β€˜βŸ¨π‘‹, π‘ŒβŸ©) = π‘Œ)
2621, 25eqtrd 2766 . . . . 5 ((πœ‘ ∧ (𝑒 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (2nd β€˜π‘’) = π‘Œ)
2719, 26opeq12d 4876 . . . 4 ((πœ‘ ∧ (𝑒 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ βŸ¨π‘§, (2nd β€˜π‘’)⟩ = βŸ¨π‘, π‘ŒβŸ©)
2820fveq2d 6888 . . . . 5 ((πœ‘ ∧ (𝑒 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (1st β€˜π‘’) = (1st β€˜βŸ¨π‘‹, π‘ŒβŸ©))
29 op1stg 7983 . . . . . 6 ((𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (1st β€˜βŸ¨π‘‹, π‘ŒβŸ©) = 𝑋)
301, 23, 29syl2an2r 682 . . . . 5 ((πœ‘ ∧ (𝑒 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (1st β€˜βŸ¨π‘‹, π‘ŒβŸ©) = 𝑋)
3128, 30eqtrd 2766 . . . 4 ((πœ‘ ∧ (𝑒 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (1st β€˜π‘’) = 𝑋)
3227, 31oveq12d 7422 . . 3 ((πœ‘ ∧ (𝑒 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’)) = (βŸ¨π‘, π‘ŒβŸ© Β· 𝑋))
3332tposeqd 8212 . 2 ((πœ‘ ∧ (𝑒 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’)) = tpos (βŸ¨π‘, π‘ŒβŸ© Β· 𝑋))
341, 22opelxpd 5708 . 2 (πœ‘ β†’ βŸ¨π‘‹, π‘ŒβŸ© ∈ (𝐡 Γ— 𝐡))
35 oppcco.z . 2 (πœ‘ β†’ 𝑍 ∈ 𝐡)
36 ovex 7437 . . . 4 (βŸ¨π‘, π‘ŒβŸ© Β· 𝑋) ∈ V
3736tposex 8243 . . 3 tpos (βŸ¨π‘, π‘ŒβŸ© Β· 𝑋) ∈ V
3837a1i 11 . 2 (πœ‘ β†’ tpos (βŸ¨π‘, π‘ŒβŸ© Β· 𝑋) ∈ V)
3918, 33, 34, 35, 38ovmpod 7555 1 (πœ‘ β†’ (βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜π‘‚)𝑍) = tpos (βŸ¨π‘, π‘ŒβŸ© Β· 𝑋))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098  Vcvv 3468  βŸ¨cop 4629   Γ— cxp 5667  β€˜cfv 6536  (class class class)co 7404   ∈ cmpo 7406  1st c1st 7969  2nd c2nd 7970  tpos ctpos 8208   sSet csts 17103  ndxcnx 17133  Basecbs 17151  Hom chom 17215  compcco 17216  oppCatcoppc 17662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-tpos 8209  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-ltxr 11254  df-nn 12214  df-2 12276  df-3 12277  df-4 12278  df-5 12279  df-6 12280  df-7 12281  df-8 12282  df-9 12283  df-n0 12474  df-dec 12679  df-sets 17104  df-slot 17122  df-ndx 17134  df-cco 17229  df-oppc 17663
This theorem is referenced by:  oppcco  17669
  Copyright terms: Public domain W3C validator