Step | Hyp | Ref
| Expression |
1 | | oppcco.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
2 | | elfvex 6789 |
. . . . . 6
⊢ (𝑋 ∈ (Base‘𝐶) → 𝐶 ∈ V) |
3 | | oppcco.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐶) |
4 | 2, 3 | eleq2s 2857 |
. . . . 5
⊢ (𝑋 ∈ 𝐵 → 𝐶 ∈ V) |
5 | | eqid 2738 |
. . . . . 6
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
6 | | oppcco.c |
. . . . . 6
⊢ · =
(comp‘𝐶) |
7 | | oppcco.o |
. . . . . 6
⊢ 𝑂 = (oppCat‘𝐶) |
8 | 3, 5, 6, 7 | oppcval 17339 |
. . . . 5
⊢ (𝐶 ∈ V → 𝑂 = ((𝐶 sSet 〈(Hom ‘ndx), tpos (Hom
‘𝐶)〉) sSet
〈(comp‘ndx), (𝑢
∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ tpos (〈𝑧, (2nd ‘𝑢)〉 · (1st
‘𝑢)))〉)) |
9 | 1, 4, 8 | 3syl 18 |
. . . 4
⊢ (𝜑 → 𝑂 = ((𝐶 sSet 〈(Hom ‘ndx), tpos (Hom
‘𝐶)〉) sSet
〈(comp‘ndx), (𝑢
∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ tpos (〈𝑧, (2nd ‘𝑢)〉 · (1st
‘𝑢)))〉)) |
10 | 9 | fveq2d 6760 |
. . 3
⊢ (𝜑 → (comp‘𝑂) = (comp‘((𝐶 sSet 〈(Hom ‘ndx),
tpos (Hom ‘𝐶)〉)
sSet 〈(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ tpos (〈𝑧, (2nd ‘𝑢)〉 · (1st
‘𝑢)))〉))) |
11 | | ovex 7288 |
. . . 4
⊢ (𝐶 sSet 〈(Hom ‘ndx),
tpos (Hom ‘𝐶)〉)
∈ V |
12 | 3 | fvexi 6770 |
. . . . . 6
⊢ 𝐵 ∈ V |
13 | 12, 12 | xpex 7581 |
. . . . 5
⊢ (𝐵 × 𝐵) ∈ V |
14 | 13, 12 | mpoex 7893 |
. . . 4
⊢ (𝑢 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ tpos (〈𝑧, (2nd ‘𝑢)〉 · (1st
‘𝑢))) ∈
V |
15 | | ccoid 17043 |
. . . . 5
⊢ comp =
Slot (comp‘ndx) |
16 | 15 | setsid 16837 |
. . . 4
⊢ (((𝐶 sSet 〈(Hom ‘ndx),
tpos (Hom ‘𝐶)〉)
∈ V ∧ (𝑢 ∈
(𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ tpos (〈𝑧, (2nd ‘𝑢)〉 · (1st
‘𝑢))) ∈ V)
→ (𝑢 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ tpos (〈𝑧, (2nd ‘𝑢)〉 · (1st
‘𝑢))) =
(comp‘((𝐶 sSet
〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉) sSet 〈(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ tpos (〈𝑧, (2nd ‘𝑢)〉 · (1st
‘𝑢)))〉))) |
17 | 11, 14, 16 | mp2an 688 |
. . 3
⊢ (𝑢 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ tpos (〈𝑧, (2nd ‘𝑢)〉 · (1st
‘𝑢))) =
(comp‘((𝐶 sSet
〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉) sSet 〈(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ tpos (〈𝑧, (2nd ‘𝑢)〉 · (1st
‘𝑢)))〉)) |
18 | 10, 17 | eqtr4di 2797 |
. 2
⊢ (𝜑 → (comp‘𝑂) = (𝑢 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ tpos (〈𝑧, (2nd ‘𝑢)〉 · (1st
‘𝑢)))) |
19 | | simprr 769 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → 𝑧 = 𝑍) |
20 | | simprl 767 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → 𝑢 = 〈𝑋, 𝑌〉) |
21 | 20 | fveq2d 6760 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘𝑢) = (2nd
‘〈𝑋, 𝑌〉)) |
22 | | oppcco.y |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
23 | 22 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → 𝑌 ∈ 𝐵) |
24 | | op2ndg 7817 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) |
25 | 1, 23, 24 | syl2an2r 681 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) |
26 | 21, 25 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘𝑢) = 𝑌) |
27 | 19, 26 | opeq12d 4809 |
. . . 4
⊢ ((𝜑 ∧ (𝑢 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → 〈𝑧, (2nd ‘𝑢)〉 = 〈𝑍, 𝑌〉) |
28 | 20 | fveq2d 6760 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (1st ‘𝑢) = (1st
‘〈𝑋, 𝑌〉)) |
29 | | op1stg 7816 |
. . . . . 6
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (1st ‘〈𝑋, 𝑌〉) = 𝑋) |
30 | 1, 23, 29 | syl2an2r 681 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (1st ‘〈𝑋, 𝑌〉) = 𝑋) |
31 | 28, 30 | eqtrd 2778 |
. . . 4
⊢ ((𝜑 ∧ (𝑢 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (1st ‘𝑢) = 𝑋) |
32 | 27, 31 | oveq12d 7273 |
. . 3
⊢ ((𝜑 ∧ (𝑢 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (〈𝑧, (2nd ‘𝑢)〉 · (1st
‘𝑢)) = (〈𝑍, 𝑌〉 · 𝑋)) |
33 | 32 | tposeqd 8016 |
. 2
⊢ ((𝜑 ∧ (𝑢 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → tpos (〈𝑧, (2nd ‘𝑢)〉 · (1st
‘𝑢)) = tpos
(〈𝑍, 𝑌〉 · 𝑋)) |
34 | 1, 22 | opelxpd 5618 |
. 2
⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
35 | | oppcco.z |
. 2
⊢ (𝜑 → 𝑍 ∈ 𝐵) |
36 | | ovex 7288 |
. . . 4
⊢
(〈𝑍, 𝑌〉 · 𝑋) ∈ V |
37 | 36 | tposex 8047 |
. . 3
⊢ tpos
(〈𝑍, 𝑌〉 · 𝑋) ∈ V |
38 | 37 | a1i 11 |
. 2
⊢ (𝜑 → tpos (〈𝑍, 𝑌〉 · 𝑋) ∈ V) |
39 | 18, 33, 34, 35, 38 | ovmpod 7403 |
1
⊢ (𝜑 → (〈𝑋, 𝑌〉(comp‘𝑂)𝑍) = tpos (〈𝑍, 𝑌〉 · 𝑋)) |