MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppccofval Structured version   Visualization version   GIF version

Theorem oppccofval 17702
Description: Composition in the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
oppcco.b 𝐡 = (Baseβ€˜πΆ)
oppcco.c Β· = (compβ€˜πΆ)
oppcco.o 𝑂 = (oppCatβ€˜πΆ)
oppcco.x (πœ‘ β†’ 𝑋 ∈ 𝐡)
oppcco.y (πœ‘ β†’ π‘Œ ∈ 𝐡)
oppcco.z (πœ‘ β†’ 𝑍 ∈ 𝐡)
Assertion
Ref Expression
oppccofval (πœ‘ β†’ (βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜π‘‚)𝑍) = tpos (βŸ¨π‘, π‘ŒβŸ© Β· 𝑋))

Proof of Theorem oppccofval
Dummy variables 𝑧 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppcco.x . . . . 5 (πœ‘ β†’ 𝑋 ∈ 𝐡)
2 elfvex 6938 . . . . . 6 (𝑋 ∈ (Baseβ€˜πΆ) β†’ 𝐢 ∈ V)
3 oppcco.b . . . . . 6 𝐡 = (Baseβ€˜πΆ)
42, 3eleq2s 2846 . . . . 5 (𝑋 ∈ 𝐡 β†’ 𝐢 ∈ V)
5 eqid 2727 . . . . . 6 (Hom β€˜πΆ) = (Hom β€˜πΆ)
6 oppcco.c . . . . . 6 Β· = (compβ€˜πΆ)
7 oppcco.o . . . . . 6 𝑂 = (oppCatβ€˜πΆ)
83, 5, 6, 7oppcval 17698 . . . . 5 (𝐢 ∈ V β†’ 𝑂 = ((𝐢 sSet ⟨(Hom β€˜ndx), tpos (Hom β€˜πΆ)⟩) sSet ⟨(compβ€˜ndx), (𝑒 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’)))⟩))
91, 4, 83syl 18 . . . 4 (πœ‘ β†’ 𝑂 = ((𝐢 sSet ⟨(Hom β€˜ndx), tpos (Hom β€˜πΆ)⟩) sSet ⟨(compβ€˜ndx), (𝑒 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’)))⟩))
109fveq2d 6904 . . 3 (πœ‘ β†’ (compβ€˜π‘‚) = (compβ€˜((𝐢 sSet ⟨(Hom β€˜ndx), tpos (Hom β€˜πΆ)⟩) sSet ⟨(compβ€˜ndx), (𝑒 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’)))⟩)))
11 ovex 7457 . . . 4 (𝐢 sSet ⟨(Hom β€˜ndx), tpos (Hom β€˜πΆ)⟩) ∈ V
123fvexi 6914 . . . . . 6 𝐡 ∈ V
1312, 12xpex 7759 . . . . 5 (𝐡 Γ— 𝐡) ∈ V
1413, 12mpoex 8088 . . . 4 (𝑒 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’))) ∈ V
15 ccoid 17400 . . . . 5 comp = Slot (compβ€˜ndx)
1615setsid 17182 . . . 4 (((𝐢 sSet ⟨(Hom β€˜ndx), tpos (Hom β€˜πΆ)⟩) ∈ V ∧ (𝑒 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’))) ∈ V) β†’ (𝑒 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’))) = (compβ€˜((𝐢 sSet ⟨(Hom β€˜ndx), tpos (Hom β€˜πΆ)⟩) sSet ⟨(compβ€˜ndx), (𝑒 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’)))⟩)))
1711, 14, 16mp2an 690 . . 3 (𝑒 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’))) = (compβ€˜((𝐢 sSet ⟨(Hom β€˜ndx), tpos (Hom β€˜πΆ)⟩) sSet ⟨(compβ€˜ndx), (𝑒 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’)))⟩))
1810, 17eqtr4di 2785 . 2 (πœ‘ β†’ (compβ€˜π‘‚) = (𝑒 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’))))
19 simprr 771 . . . . 5 ((πœ‘ ∧ (𝑒 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ 𝑧 = 𝑍)
20 simprl 769 . . . . . . 7 ((πœ‘ ∧ (𝑒 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ 𝑒 = βŸ¨π‘‹, π‘ŒβŸ©)
2120fveq2d 6904 . . . . . 6 ((πœ‘ ∧ (𝑒 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (2nd β€˜π‘’) = (2nd β€˜βŸ¨π‘‹, π‘ŒβŸ©))
22 oppcco.y . . . . . . . 8 (πœ‘ β†’ π‘Œ ∈ 𝐡)
2322adantr 479 . . . . . . 7 ((πœ‘ ∧ (𝑒 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ π‘Œ ∈ 𝐡)
24 op2ndg 8010 . . . . . . 7 ((𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (2nd β€˜βŸ¨π‘‹, π‘ŒβŸ©) = π‘Œ)
251, 23, 24syl2an2r 683 . . . . . 6 ((πœ‘ ∧ (𝑒 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (2nd β€˜βŸ¨π‘‹, π‘ŒβŸ©) = π‘Œ)
2621, 25eqtrd 2767 . . . . 5 ((πœ‘ ∧ (𝑒 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (2nd β€˜π‘’) = π‘Œ)
2719, 26opeq12d 4884 . . . 4 ((πœ‘ ∧ (𝑒 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ βŸ¨π‘§, (2nd β€˜π‘’)⟩ = βŸ¨π‘, π‘ŒβŸ©)
2820fveq2d 6904 . . . . 5 ((πœ‘ ∧ (𝑒 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (1st β€˜π‘’) = (1st β€˜βŸ¨π‘‹, π‘ŒβŸ©))
29 op1stg 8009 . . . . . 6 ((𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (1st β€˜βŸ¨π‘‹, π‘ŒβŸ©) = 𝑋)
301, 23, 29syl2an2r 683 . . . . 5 ((πœ‘ ∧ (𝑒 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (1st β€˜βŸ¨π‘‹, π‘ŒβŸ©) = 𝑋)
3128, 30eqtrd 2767 . . . 4 ((πœ‘ ∧ (𝑒 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (1st β€˜π‘’) = 𝑋)
3227, 31oveq12d 7442 . . 3 ((πœ‘ ∧ (𝑒 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’)) = (βŸ¨π‘, π‘ŒβŸ© Β· 𝑋))
3332tposeqd 8239 . 2 ((πœ‘ ∧ (𝑒 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’)) = tpos (βŸ¨π‘, π‘ŒβŸ© Β· 𝑋))
341, 22opelxpd 5719 . 2 (πœ‘ β†’ βŸ¨π‘‹, π‘ŒβŸ© ∈ (𝐡 Γ— 𝐡))
35 oppcco.z . 2 (πœ‘ β†’ 𝑍 ∈ 𝐡)
36 ovex 7457 . . . 4 (βŸ¨π‘, π‘ŒβŸ© Β· 𝑋) ∈ V
3736tposex 8270 . . 3 tpos (βŸ¨π‘, π‘ŒβŸ© Β· 𝑋) ∈ V
3837a1i 11 . 2 (πœ‘ β†’ tpos (βŸ¨π‘, π‘ŒβŸ© Β· 𝑋) ∈ V)
3918, 33, 34, 35, 38ovmpod 7577 1 (πœ‘ β†’ (βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜π‘‚)𝑍) = tpos (βŸ¨π‘, π‘ŒβŸ© Β· 𝑋))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098  Vcvv 3471  βŸ¨cop 4636   Γ— cxp 5678  β€˜cfv 6551  (class class class)co 7424   ∈ cmpo 7426  1st c1st 7995  2nd c2nd 7996  tpos ctpos 8235   sSet csts 17137  ndxcnx 17167  Basecbs 17185  Hom chom 17249  compcco 17250  oppCatcoppc 17696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-1st 7997  df-2nd 7998  df-tpos 8236  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11286  df-mnf 11287  df-ltxr 11289  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12509  df-dec 12714  df-sets 17138  df-slot 17156  df-ndx 17168  df-cco 17263  df-oppc 17697
This theorem is referenced by:  oppcco  17703
  Copyright terms: Public domain W3C validator