MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppccofval Structured version   Visualization version   GIF version

Theorem oppccofval 17677
Description: Composition in the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
oppcco.b 𝐵 = (Base‘𝐶)
oppcco.c · = (comp‘𝐶)
oppcco.o 𝑂 = (oppCat‘𝐶)
oppcco.x (𝜑𝑋𝐵)
oppcco.y (𝜑𝑌𝐵)
oppcco.z (𝜑𝑍𝐵)
Assertion
Ref Expression
oppccofval (𝜑 → (⟨𝑋, 𝑌⟩(comp‘𝑂)𝑍) = tpos (⟨𝑍, 𝑌· 𝑋))

Proof of Theorem oppccofval
Dummy variables 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppcco.x . . . . 5 (𝜑𝑋𝐵)
2 elfvex 6896 . . . . . 6 (𝑋 ∈ (Base‘𝐶) → 𝐶 ∈ V)
3 oppcco.b . . . . . 6 𝐵 = (Base‘𝐶)
42, 3eleq2s 2846 . . . . 5 (𝑋𝐵𝐶 ∈ V)
5 eqid 2729 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
6 oppcco.c . . . . . 6 · = (comp‘𝐶)
7 oppcco.o . . . . . 6 𝑂 = (oppCat‘𝐶)
83, 5, 6, 7oppcval 17674 . . . . 5 (𝐶 ∈ V → 𝑂 = ((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩))
91, 4, 83syl 18 . . . 4 (𝜑𝑂 = ((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩))
109fveq2d 6862 . . 3 (𝜑 → (comp‘𝑂) = (comp‘((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩)))
11 ovex 7420 . . . 4 (𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) ∈ V
123fvexi 6872 . . . . . 6 𝐵 ∈ V
1312, 12xpex 7729 . . . . 5 (𝐵 × 𝐵) ∈ V
1413, 12mpoex 8058 . . . 4 (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢))) ∈ V
15 ccoid 17377 . . . . 5 comp = Slot (comp‘ndx)
1615setsid 17177 . . . 4 (((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) ∈ V ∧ (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢))) ∈ V) → (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢))) = (comp‘((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩)))
1711, 14, 16mp2an 692 . . 3 (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢))) = (comp‘((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩))
1810, 17eqtr4di 2782 . 2 (𝜑 → (comp‘𝑂) = (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢))))
19 simprr 772 . . . . 5 ((𝜑 ∧ (𝑢 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → 𝑧 = 𝑍)
20 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑢 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → 𝑢 = ⟨𝑋, 𝑌⟩)
2120fveq2d 6862 . . . . . 6 ((𝜑 ∧ (𝑢 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd𝑢) = (2nd ‘⟨𝑋, 𝑌⟩))
22 oppcco.y . . . . . . . 8 (𝜑𝑌𝐵)
2322adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑢 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → 𝑌𝐵)
24 op2ndg 7981 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
251, 23, 24syl2an2r 685 . . . . . 6 ((𝜑 ∧ (𝑢 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
2621, 25eqtrd 2764 . . . . 5 ((𝜑 ∧ (𝑢 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd𝑢) = 𝑌)
2719, 26opeq12d 4845 . . . 4 ((𝜑 ∧ (𝑢 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → ⟨𝑧, (2nd𝑢)⟩ = ⟨𝑍, 𝑌⟩)
2820fveq2d 6862 . . . . 5 ((𝜑 ∧ (𝑢 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (1st𝑢) = (1st ‘⟨𝑋, 𝑌⟩))
29 op1stg 7980 . . . . . 6 ((𝑋𝐵𝑌𝐵) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
301, 23, 29syl2an2r 685 . . . . 5 ((𝜑 ∧ (𝑢 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
3128, 30eqtrd 2764 . . . 4 ((𝜑 ∧ (𝑢 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (1st𝑢) = 𝑋)
3227, 31oveq12d 7405 . . 3 ((𝜑 ∧ (𝑢 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)) = (⟨𝑍, 𝑌· 𝑋))
3332tposeqd 8208 . 2 ((𝜑 ∧ (𝑢 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)) = tpos (⟨𝑍, 𝑌· 𝑋))
341, 22opelxpd 5677 . 2 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
35 oppcco.z . 2 (𝜑𝑍𝐵)
36 ovex 7420 . . . 4 (⟨𝑍, 𝑌· 𝑋) ∈ V
3736tposex 8239 . . 3 tpos (⟨𝑍, 𝑌· 𝑋) ∈ V
3837a1i 11 . 2 (𝜑 → tpos (⟨𝑍, 𝑌· 𝑋) ∈ V)
3918, 33, 34, 35, 38ovmpod 7541 1 (𝜑 → (⟨𝑋, 𝑌⟩(comp‘𝑂)𝑍) = tpos (⟨𝑍, 𝑌· 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cop 4595   × cxp 5636  cfv 6511  (class class class)co 7387  cmpo 7389  1st c1st 7966  2nd c2nd 7967  tpos ctpos 8204   sSet csts 17133  ndxcnx 17163  Basecbs 17179  Hom chom 17231  compcco 17232  oppCatcoppc 17672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-dec 12650  df-sets 17134  df-slot 17152  df-ndx 17164  df-cco 17245  df-oppc 17673
This theorem is referenced by:  oppcco  17678  oppgoppcco  49580
  Copyright terms: Public domain W3C validator