MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppccofval Structured version   Visualization version   GIF version

Theorem oppccofval 17617
Description: Composition in the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
oppcco.b 𝐵 = (Base‘𝐶)
oppcco.c · = (comp‘𝐶)
oppcco.o 𝑂 = (oppCat‘𝐶)
oppcco.x (𝜑𝑋𝐵)
oppcco.y (𝜑𝑌𝐵)
oppcco.z (𝜑𝑍𝐵)
Assertion
Ref Expression
oppccofval (𝜑 → (⟨𝑋, 𝑌⟩(comp‘𝑂)𝑍) = tpos (⟨𝑍, 𝑌· 𝑋))

Proof of Theorem oppccofval
Dummy variables 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppcco.x . . . . 5 (𝜑𝑋𝐵)
2 elfvex 6852 . . . . . 6 (𝑋 ∈ (Base‘𝐶) → 𝐶 ∈ V)
3 oppcco.b . . . . . 6 𝐵 = (Base‘𝐶)
42, 3eleq2s 2849 . . . . 5 (𝑋𝐵𝐶 ∈ V)
5 eqid 2731 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
6 oppcco.c . . . . . 6 · = (comp‘𝐶)
7 oppcco.o . . . . . 6 𝑂 = (oppCat‘𝐶)
83, 5, 6, 7oppcval 17614 . . . . 5 (𝐶 ∈ V → 𝑂 = ((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩))
91, 4, 83syl 18 . . . 4 (𝜑𝑂 = ((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩))
109fveq2d 6821 . . 3 (𝜑 → (comp‘𝑂) = (comp‘((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩)))
11 ovex 7374 . . . 4 (𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) ∈ V
123fvexi 6831 . . . . . 6 𝐵 ∈ V
1312, 12xpex 7681 . . . . 5 (𝐵 × 𝐵) ∈ V
1413, 12mpoex 8006 . . . 4 (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢))) ∈ V
15 ccoid 17313 . . . . 5 comp = Slot (comp‘ndx)
1615setsid 17113 . . . 4 (((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) ∈ V ∧ (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢))) ∈ V) → (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢))) = (comp‘((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩)))
1711, 14, 16mp2an 692 . . 3 (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢))) = (comp‘((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩))
1810, 17eqtr4di 2784 . 2 (𝜑 → (comp‘𝑂) = (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢))))
19 simprr 772 . . . . 5 ((𝜑 ∧ (𝑢 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → 𝑧 = 𝑍)
20 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑢 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → 𝑢 = ⟨𝑋, 𝑌⟩)
2120fveq2d 6821 . . . . . 6 ((𝜑 ∧ (𝑢 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd𝑢) = (2nd ‘⟨𝑋, 𝑌⟩))
22 oppcco.y . . . . . . . 8 (𝜑𝑌𝐵)
2322adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑢 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → 𝑌𝐵)
24 op2ndg 7929 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
251, 23, 24syl2an2r 685 . . . . . 6 ((𝜑 ∧ (𝑢 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
2621, 25eqtrd 2766 . . . . 5 ((𝜑 ∧ (𝑢 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd𝑢) = 𝑌)
2719, 26opeq12d 4828 . . . 4 ((𝜑 ∧ (𝑢 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → ⟨𝑧, (2nd𝑢)⟩ = ⟨𝑍, 𝑌⟩)
2820fveq2d 6821 . . . . 5 ((𝜑 ∧ (𝑢 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (1st𝑢) = (1st ‘⟨𝑋, 𝑌⟩))
29 op1stg 7928 . . . . . 6 ((𝑋𝐵𝑌𝐵) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
301, 23, 29syl2an2r 685 . . . . 5 ((𝜑 ∧ (𝑢 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
3128, 30eqtrd 2766 . . . 4 ((𝜑 ∧ (𝑢 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (1st𝑢) = 𝑋)
3227, 31oveq12d 7359 . . 3 ((𝜑 ∧ (𝑢 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)) = (⟨𝑍, 𝑌· 𝑋))
3332tposeqd 8154 . 2 ((𝜑 ∧ (𝑢 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)) = tpos (⟨𝑍, 𝑌· 𝑋))
341, 22opelxpd 5650 . 2 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
35 oppcco.z . 2 (𝜑𝑍𝐵)
36 ovex 7374 . . . 4 (⟨𝑍, 𝑌· 𝑋) ∈ V
3736tposex 8185 . . 3 tpos (⟨𝑍, 𝑌· 𝑋) ∈ V
3837a1i 11 . 2 (𝜑 → tpos (⟨𝑍, 𝑌· 𝑋) ∈ V)
3918, 33, 34, 35, 38ovmpod 7493 1 (𝜑 → (⟨𝑋, 𝑌⟩(comp‘𝑂)𝑍) = tpos (⟨𝑍, 𝑌· 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cop 4577   × cxp 5609  cfv 6476  (class class class)co 7341  cmpo 7343  1st c1st 7914  2nd c2nd 7915  tpos ctpos 8150   sSet csts 17069  ndxcnx 17099  Basecbs 17115  Hom chom 17167  compcco 17168  oppCatcoppc 17612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-ltxr 11146  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-dec 12584  df-sets 17070  df-slot 17088  df-ndx 17100  df-cco 17181  df-oppc 17613
This theorem is referenced by:  oppcco  17618  oppgoppcco  49623
  Copyright terms: Public domain W3C validator