MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madulid Structured version   Visualization version   GIF version

Theorem madulid 22635
Description: Multiplying the adjunct of a matrix with the matrix results in the identity matrix multiplied with the determinant of the matrix. See Proposition 4.16 in [Lang] p. 518. (Contributed by Stefan O'Rear, 17-Jul-2018.)
Hypotheses
Ref Expression
madurid.a 𝐴 = (𝑁 Mat 𝑅)
madurid.b 𝐵 = (Base‘𝐴)
madurid.j 𝐽 = (𝑁 maAdju 𝑅)
madurid.d 𝐷 = (𝑁 maDet 𝑅)
madurid.i 1 = (1r𝐴)
madurid.t · = (.r𝐴)
madurid.s = ( ·𝑠𝐴)
Assertion
Ref Expression
madulid ((𝑀𝐵𝑅 ∈ CRing) → ((𝐽𝑀) · 𝑀) = ((𝐷𝑀) 1 ))

Proof of Theorem madulid
StepHypRef Expression
1 simpr 483 . . . . 5 ((𝑀𝐵𝑅 ∈ CRing) → 𝑅 ∈ CRing)
2 madurid.a . . . . . . . 8 𝐴 = (𝑁 Mat 𝑅)
3 madurid.j . . . . . . . 8 𝐽 = (𝑁 maAdju 𝑅)
4 madurid.b . . . . . . . 8 𝐵 = (Base‘𝐴)
52, 3, 4maduf 22631 . . . . . . 7 (𝑅 ∈ CRing → 𝐽:𝐵𝐵)
65ffvelcdmda 7090 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐽𝑀) ∈ 𝐵)
76ancoms 457 . . . . 5 ((𝑀𝐵𝑅 ∈ CRing) → (𝐽𝑀) ∈ 𝐵)
8 simpl 481 . . . . 5 ((𝑀𝐵𝑅 ∈ CRing) → 𝑀𝐵)
9 madurid.t . . . . . 6 · = (.r𝐴)
102, 4, 9mattposm 22449 . . . . 5 ((𝑅 ∈ CRing ∧ (𝐽𝑀) ∈ 𝐵𝑀𝐵) → tpos ((𝐽𝑀) · 𝑀) = (tpos 𝑀 · tpos (𝐽𝑀)))
111, 7, 8, 10syl3anc 1368 . . . 4 ((𝑀𝐵𝑅 ∈ CRing) → tpos ((𝐽𝑀) · 𝑀) = (tpos 𝑀 · tpos (𝐽𝑀)))
122, 3, 4madutpos 22632 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐽‘tpos 𝑀) = tpos (𝐽𝑀))
1312ancoms 457 . . . . 5 ((𝑀𝐵𝑅 ∈ CRing) → (𝐽‘tpos 𝑀) = tpos (𝐽𝑀))
1413oveq2d 7432 . . . 4 ((𝑀𝐵𝑅 ∈ CRing) → (tpos 𝑀 · (𝐽‘tpos 𝑀)) = (tpos 𝑀 · tpos (𝐽𝑀)))
152, 4mattposcl 22443 . . . . 5 (𝑀𝐵 → tpos 𝑀𝐵)
16 madurid.d . . . . . 6 𝐷 = (𝑁 maDet 𝑅)
17 madurid.i . . . . . 6 1 = (1r𝐴)
18 madurid.s . . . . . 6 = ( ·𝑠𝐴)
192, 4, 3, 16, 17, 9, 18madurid 22634 . . . . 5 ((tpos 𝑀𝐵𝑅 ∈ CRing) → (tpos 𝑀 · (𝐽‘tpos 𝑀)) = ((𝐷‘tpos 𝑀) 1 ))
2015, 19sylan 578 . . . 4 ((𝑀𝐵𝑅 ∈ CRing) → (tpos 𝑀 · (𝐽‘tpos 𝑀)) = ((𝐷‘tpos 𝑀) 1 ))
2111, 14, 203eqtr2d 2772 . . 3 ((𝑀𝐵𝑅 ∈ CRing) → tpos ((𝐽𝑀) · 𝑀) = ((𝐷‘tpos 𝑀) 1 ))
2221tposeqd 8236 . 2 ((𝑀𝐵𝑅 ∈ CRing) → tpos tpos ((𝐽𝑀) · 𝑀) = tpos ((𝐷‘tpos 𝑀) 1 ))
232, 4matrcl 22400 . . . . . 6 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
2423simpld 493 . . . . 5 (𝑀𝐵𝑁 ∈ Fin)
25 crngring 20224 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
262matring 22433 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
2724, 25, 26syl2an 594 . . . 4 ((𝑀𝐵𝑅 ∈ CRing) → 𝐴 ∈ Ring)
284, 9ringcl 20229 . . . 4 ((𝐴 ∈ Ring ∧ (𝐽𝑀) ∈ 𝐵𝑀𝐵) → ((𝐽𝑀) · 𝑀) ∈ 𝐵)
2927, 7, 8, 28syl3anc 1368 . . 3 ((𝑀𝐵𝑅 ∈ CRing) → ((𝐽𝑀) · 𝑀) ∈ 𝐵)
302, 4mattpostpos 22444 . . 3 (((𝐽𝑀) · 𝑀) ∈ 𝐵 → tpos tpos ((𝐽𝑀) · 𝑀) = ((𝐽𝑀) · 𝑀))
3129, 30syl 17 . 2 ((𝑀𝐵𝑅 ∈ CRing) → tpos tpos ((𝐽𝑀) · 𝑀) = ((𝐽𝑀) · 𝑀))
32 eqid 2726 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
3316, 2, 4, 32mdetf 22585 . . . . . 6 (𝑅 ∈ CRing → 𝐷:𝐵⟶(Base‘𝑅))
3433adantl 480 . . . . 5 ((𝑀𝐵𝑅 ∈ CRing) → 𝐷:𝐵⟶(Base‘𝑅))
3515adantr 479 . . . . 5 ((𝑀𝐵𝑅 ∈ CRing) → tpos 𝑀𝐵)
3634, 35ffvelcdmd 7091 . . . 4 ((𝑀𝐵𝑅 ∈ CRing) → (𝐷‘tpos 𝑀) ∈ (Base‘𝑅))
374, 17ringidcl 20241 . . . . 5 (𝐴 ∈ Ring → 1𝐵)
3827, 37syl 17 . . . 4 ((𝑀𝐵𝑅 ∈ CRing) → 1𝐵)
392, 4, 32, 18mattposvs 22445 . . . 4 (((𝐷‘tpos 𝑀) ∈ (Base‘𝑅) ∧ 1𝐵) → tpos ((𝐷‘tpos 𝑀) 1 ) = ((𝐷‘tpos 𝑀) tpos 1 ))
4036, 38, 39syl2anc 582 . . 3 ((𝑀𝐵𝑅 ∈ CRing) → tpos ((𝐷‘tpos 𝑀) 1 ) = ((𝐷‘tpos 𝑀) tpos 1 ))
4116, 2, 4mdettpos 22601 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐷‘tpos 𝑀) = (𝐷𝑀))
4241ancoms 457 . . . 4 ((𝑀𝐵𝑅 ∈ CRing) → (𝐷‘tpos 𝑀) = (𝐷𝑀))
432, 17mattpos1 22446 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → tpos 1 = 1 )
4424, 25, 43syl2an 594 . . . 4 ((𝑀𝐵𝑅 ∈ CRing) → tpos 1 = 1 )
4542, 44oveq12d 7434 . . 3 ((𝑀𝐵𝑅 ∈ CRing) → ((𝐷‘tpos 𝑀) tpos 1 ) = ((𝐷𝑀) 1 ))
4640, 45eqtrd 2766 . 2 ((𝑀𝐵𝑅 ∈ CRing) → tpos ((𝐷‘tpos 𝑀) 1 ) = ((𝐷𝑀) 1 ))
4722, 31, 463eqtr3d 2774 1 ((𝑀𝐵𝑅 ∈ CRing) → ((𝐽𝑀) · 𝑀) = ((𝐷𝑀) 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  Vcvv 3462  wf 6542  cfv 6546  (class class class)co 7416  tpos ctpos 8232  Fincfn 8966  Basecbs 17208  .rcmulr 17262   ·𝑠 cvsca 17265  1rcur 20160  Ringcrg 20212  CRingccrg 20213   Mat cmat 22395   maDet cmdat 22574   maAdju cmadu 22622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226  ax-addf 11228  ax-mulf 11229
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-xor 1506  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-ot 4632  df-uni 4906  df-int 4947  df-iun 4995  df-iin 4996  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-isom 6555  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-of 7682  df-om 7869  df-1st 7995  df-2nd 7996  df-supp 8167  df-tpos 8233  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8726  df-map 8849  df-pm 8850  df-ixp 8919  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-fsupp 9399  df-sup 9478  df-oi 9546  df-card 9975  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-div 11913  df-nn 12259  df-2 12321  df-3 12322  df-4 12323  df-5 12324  df-6 12325  df-7 12326  df-8 12327  df-9 12328  df-n0 12519  df-xnn0 12591  df-z 12605  df-dec 12724  df-uz 12869  df-rp 13023  df-fz 13533  df-fzo 13676  df-seq 14016  df-exp 14076  df-hash 14343  df-word 14518  df-lsw 14566  df-concat 14574  df-s1 14599  df-substr 14644  df-pfx 14674  df-splice 14753  df-reverse 14762  df-s2 14852  df-struct 17144  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-plusg 17274  df-mulr 17275  df-starv 17276  df-sca 17277  df-vsca 17278  df-ip 17279  df-tset 17280  df-ple 17281  df-ds 17283  df-unif 17284  df-hom 17285  df-cco 17286  df-0g 17451  df-gsum 17452  df-prds 17457  df-pws 17459  df-mre 17594  df-mrc 17595  df-acs 17597  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-mhm 18768  df-submnd 18769  df-efmnd 18854  df-grp 18926  df-minusg 18927  df-sbg 18928  df-mulg 19058  df-subg 19113  df-ghm 19203  df-gim 19249  df-cntz 19307  df-oppg 19336  df-symg 19361  df-pmtr 19436  df-psgn 19485  df-evpm 19486  df-cmn 19776  df-abl 19777  df-mgp 20114  df-rng 20132  df-ur 20161  df-ring 20214  df-cring 20215  df-oppr 20312  df-dvdsr 20335  df-unit 20336  df-invr 20366  df-dvr 20379  df-rhm 20450  df-subrng 20524  df-subrg 20549  df-drng 20705  df-lmod 20834  df-lss 20905  df-sra 21147  df-rgmod 21148  df-cnfld 21340  df-zring 21433  df-zrh 21489  df-dsmm 21726  df-frlm 21741  df-mamu 22379  df-mat 22396  df-mdet 22575  df-madu 22624
This theorem is referenced by:  matinv  22667
  Copyright terms: Public domain W3C validator