![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mattposm | Structured version Visualization version GIF version |
Description: Multiplying two transposed matrices results in the transposition of the product of the two matrices. (Contributed by Stefan O'Rear, 17-Jul-2018.) |
Ref | Expression |
---|---|
mattposm.a | โข ๐ด = (๐ Mat ๐ ) |
mattposm.b | โข ๐ต = (Baseโ๐ด) |
mattposm.t | โข ยท = (.rโ๐ด) |
Ref | Expression |
---|---|
mattposm | โข ((๐ โ CRing โง ๐ โ ๐ต โง ๐ โ ๐ต) โ tpos (๐ ยท ๐) = (tpos ๐ ยท tpos ๐)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . 3 โข (๐ maMul โจ๐, ๐, ๐โฉ) = (๐ maMul โจ๐, ๐, ๐โฉ) | |
2 | eqid 2733 | . . 3 โข (Baseโ๐ ) = (Baseโ๐ ) | |
3 | simp1 1137 | . . 3 โข ((๐ โ CRing โง ๐ โ ๐ต โง ๐ โ ๐ต) โ ๐ โ CRing) | |
4 | mattposm.a | . . . . . 6 โข ๐ด = (๐ Mat ๐ ) | |
5 | mattposm.b | . . . . . 6 โข ๐ต = (Baseโ๐ด) | |
6 | 4, 5 | matrcl 21912 | . . . . 5 โข (๐ โ ๐ต โ (๐ โ Fin โง ๐ โ V)) |
7 | 6 | simpld 496 | . . . 4 โข (๐ โ ๐ต โ ๐ โ Fin) |
8 | 7 | 3ad2ant3 1136 | . . 3 โข ((๐ โ CRing โง ๐ โ ๐ต โง ๐ โ ๐ต) โ ๐ โ Fin) |
9 | 4, 2, 5 | matbas2i 21924 | . . . 4 โข (๐ โ ๐ต โ ๐ โ ((Baseโ๐ ) โm (๐ ร ๐))) |
10 | 9 | 3ad2ant2 1135 | . . 3 โข ((๐ โ CRing โง ๐ โ ๐ต โง ๐ โ ๐ต) โ ๐ โ ((Baseโ๐ ) โm (๐ ร ๐))) |
11 | 4, 2, 5 | matbas2i 21924 | . . . 4 โข (๐ โ ๐ต โ ๐ โ ((Baseโ๐ ) โm (๐ ร ๐))) |
12 | 11 | 3ad2ant3 1136 | . . 3 โข ((๐ โ CRing โง ๐ โ ๐ต โง ๐ โ ๐ต) โ ๐ โ ((Baseโ๐ ) โm (๐ ร ๐))) |
13 | 1, 1, 2, 3, 8, 8, 8, 10, 12 | mamutpos 21960 | . 2 โข ((๐ โ CRing โง ๐ โ ๐ต โง ๐ โ ๐ต) โ tpos (๐(๐ maMul โจ๐, ๐, ๐โฉ)๐) = (tpos ๐(๐ maMul โจ๐, ๐, ๐โฉ)tpos ๐)) |
14 | mattposm.t | . . . . 5 โข ยท = (.rโ๐ด) | |
15 | 4, 1 | matmulr 21940 | . . . . . 6 โข ((๐ โ Fin โง ๐ โ CRing) โ (๐ maMul โจ๐, ๐, ๐โฉ) = (.rโ๐ด)) |
16 | 8, 3, 15 | syl2anc 585 | . . . . 5 โข ((๐ โ CRing โง ๐ โ ๐ต โง ๐ โ ๐ต) โ (๐ maMul โจ๐, ๐, ๐โฉ) = (.rโ๐ด)) |
17 | 14, 16 | eqtr4id 2792 | . . . 4 โข ((๐ โ CRing โง ๐ โ ๐ต โง ๐ โ ๐ต) โ ยท = (๐ maMul โจ๐, ๐, ๐โฉ)) |
18 | 17 | oveqd 7426 | . . 3 โข ((๐ โ CRing โง ๐ โ ๐ต โง ๐ โ ๐ต) โ (๐ ยท ๐) = (๐(๐ maMul โจ๐, ๐, ๐โฉ)๐)) |
19 | 18 | tposeqd 8214 | . 2 โข ((๐ โ CRing โง ๐ โ ๐ต โง ๐ โ ๐ต) โ tpos (๐ ยท ๐) = tpos (๐(๐ maMul โจ๐, ๐, ๐โฉ)๐)) |
20 | 17 | oveqd 7426 | . 2 โข ((๐ โ CRing โง ๐ โ ๐ต โง ๐ โ ๐ต) โ (tpos ๐ ยท tpos ๐) = (tpos ๐(๐ maMul โจ๐, ๐, ๐โฉ)tpos ๐)) |
21 | 13, 19, 20 | 3eqtr4d 2783 | 1 โข ((๐ โ CRing โง ๐ โ ๐ต โง ๐ โ ๐ต) โ tpos (๐ ยท ๐) = (tpos ๐ ยท tpos ๐)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง w3a 1088 = wceq 1542 โ wcel 2107 Vcvv 3475 โจcotp 4637 ร cxp 5675 โcfv 6544 (class class class)co 7409 tpos ctpos 8210 โm cmap 8820 Fincfn 8939 Basecbs 17144 .rcmulr 17198 CRingccrg 20057 maMul cmmul 21885 Mat cmat 21907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-ot 4638 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-supp 8147 df-tpos 8211 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-ixp 8892 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-fsupp 9362 df-sup 9437 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-fz 13485 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-hom 17221 df-cco 17222 df-0g 17387 df-prds 17393 df-pws 17395 df-cmn 19650 df-mgp 19988 df-cring 20059 df-sra 20785 df-rgmod 20786 df-dsmm 21287 df-frlm 21302 df-mamu 21886 df-mat 21908 |
This theorem is referenced by: madulid 22147 |
Copyright terms: Public domain | W3C validator |