MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mattposm Structured version   Visualization version   GIF version

Theorem mattposm 22375
Description: Multiplying two transposed matrices results in the transposition of the product of the two matrices. (Contributed by Stefan O'Rear, 17-Jul-2018.)
Hypotheses
Ref Expression
mattposm.a 𝐴 = (𝑁 Mat 𝑅)
mattposm.b 𝐵 = (Base‘𝐴)
mattposm.t · = (.r𝐴)
Assertion
Ref Expression
mattposm ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → tpos (𝑋 · 𝑌) = (tpos 𝑌 · tpos 𝑋))

Proof of Theorem mattposm
StepHypRef Expression
1 eqid 2731 . . 3 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
2 eqid 2731 . . 3 (Base‘𝑅) = (Base‘𝑅)
3 simp1 1136 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → 𝑅 ∈ CRing)
4 mattposm.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
5 mattposm.b . . . . . 6 𝐵 = (Base‘𝐴)
64, 5matrcl 22328 . . . . 5 (𝑌𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
76simpld 494 . . . 4 (𝑌𝐵𝑁 ∈ Fin)
873ad2ant3 1135 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → 𝑁 ∈ Fin)
94, 2, 5matbas2i 22338 . . . 4 (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
1093ad2ant2 1134 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
114, 2, 5matbas2i 22338 . . . 4 (𝑌𝐵𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
12113ad2ant3 1135 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → 𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
131, 1, 2, 3, 8, 8, 8, 10, 12mamutpos 22374 . 2 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → tpos (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌) = (tpos 𝑌(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)tpos 𝑋))
14 mattposm.t . . . . 5 · = (.r𝐴)
154, 1matmulr 22354 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
168, 3, 15syl2anc 584 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
1714, 16eqtr4id 2785 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → · = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩))
1817oveqd 7363 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) = (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌))
1918tposeqd 8159 . 2 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → tpos (𝑋 · 𝑌) = tpos (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌))
2017oveqd 7363 . 2 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → (tpos 𝑌 · tpos 𝑋) = (tpos 𝑌(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)tpos 𝑋))
2113, 19, 203eqtr4d 2776 1 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → tpos (𝑋 · 𝑌) = (tpos 𝑌 · tpos 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  cotp 4584   × cxp 5614  cfv 6481  (class class class)co 7346  tpos ctpos 8155  m cmap 8750  Fincfn 8869  Basecbs 17120  .rcmulr 17162  CRingccrg 20153   maMul cmmul 22306   Mat cmat 22323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-pws 17353  df-cmn 19695  df-mgp 20060  df-cring 20155  df-sra 21108  df-rgmod 21109  df-dsmm 21670  df-frlm 21685  df-mamu 22307  df-mat 22324
This theorem is referenced by:  madulid  22561
  Copyright terms: Public domain W3C validator