MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mattposm Structured version   Visualization version   GIF version

Theorem mattposm 21808
Description: Multiplying two transposed matrices results in the transposition of the product of the two matrices. (Contributed by Stefan O'Rear, 17-Jul-2018.)
Hypotheses
Ref Expression
mattposm.a 𝐴 = (𝑁 Mat 𝑅)
mattposm.b 𝐵 = (Base‘𝐴)
mattposm.t · = (.r𝐴)
Assertion
Ref Expression
mattposm ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → tpos (𝑋 · 𝑌) = (tpos 𝑌 · tpos 𝑋))

Proof of Theorem mattposm
StepHypRef Expression
1 eqid 2736 . . 3 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
2 eqid 2736 . . 3 (Base‘𝑅) = (Base‘𝑅)
3 simp1 1136 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → 𝑅 ∈ CRing)
4 mattposm.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
5 mattposm.b . . . . . 6 𝐵 = (Base‘𝐴)
64, 5matrcl 21759 . . . . 5 (𝑌𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
76simpld 495 . . . 4 (𝑌𝐵𝑁 ∈ Fin)
873ad2ant3 1135 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → 𝑁 ∈ Fin)
94, 2, 5matbas2i 21771 . . . 4 (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
1093ad2ant2 1134 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
114, 2, 5matbas2i 21771 . . . 4 (𝑌𝐵𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
12113ad2ant3 1135 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → 𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
131, 1, 2, 3, 8, 8, 8, 10, 12mamutpos 21807 . 2 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → tpos (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌) = (tpos 𝑌(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)tpos 𝑋))
14 mattposm.t . . . . 5 · = (.r𝐴)
154, 1matmulr 21787 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
168, 3, 15syl2anc 584 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
1714, 16eqtr4id 2795 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → · = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩))
1817oveqd 7374 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) = (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌))
1918tposeqd 8160 . 2 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → tpos (𝑋 · 𝑌) = tpos (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌))
2017oveqd 7374 . 2 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → (tpos 𝑌 · tpos 𝑋) = (tpos 𝑌(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)tpos 𝑋))
2113, 19, 203eqtr4d 2786 1 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → tpos (𝑋 · 𝑌) = (tpos 𝑌 · tpos 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3445  cotp 4594   × cxp 5631  cfv 6496  (class class class)co 7357  tpos ctpos 8156  m cmap 8765  Fincfn 8883  Basecbs 17083  .rcmulr 17134  CRingccrg 19965   maMul cmmul 21732   Mat cmat 21754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-ot 4595  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-hom 17157  df-cco 17158  df-0g 17323  df-prds 17329  df-pws 17331  df-cmn 19564  df-mgp 19897  df-cring 19967  df-sra 20633  df-rgmod 20634  df-dsmm 21138  df-frlm 21153  df-mamu 21733  df-mat 21755
This theorem is referenced by:  madulid  21994
  Copyright terms: Public domain W3C validator