| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mattposm | Structured version Visualization version GIF version | ||
| Description: Multiplying two transposed matrices results in the transposition of the product of the two matrices. (Contributed by Stefan O'Rear, 17-Jul-2018.) |
| Ref | Expression |
|---|---|
| mattposm.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| mattposm.b | ⊢ 𝐵 = (Base‘𝐴) |
| mattposm.t | ⊢ · = (.r‘𝐴) |
| Ref | Expression |
|---|---|
| mattposm | ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → tpos (𝑋 · 𝑌) = (tpos 𝑌 · tpos 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) | |
| 2 | eqid 2731 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | simp1 1136 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ CRing) | |
| 4 | mattposm.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 5 | mattposm.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
| 6 | 4, 5 | matrcl 22328 | . . . . 5 ⊢ (𝑌 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 7 | 6 | simpld 494 | . . . 4 ⊢ (𝑌 ∈ 𝐵 → 𝑁 ∈ Fin) |
| 8 | 7 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑁 ∈ Fin) |
| 9 | 4, 2, 5 | matbas2i 22338 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
| 10 | 9 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
| 11 | 4, 2, 5 | matbas2i 22338 | . . . 4 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
| 12 | 11 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
| 13 | 1, 1, 2, 3, 8, 8, 8, 10, 12 | mamutpos 22374 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → tpos (𝑋(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑌) = (tpos 𝑌(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)tpos 𝑋)) |
| 14 | mattposm.t | . . . . 5 ⊢ · = (.r‘𝐴) | |
| 15 | 4, 1 | matmulr 22354 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (.r‘𝐴)) |
| 16 | 8, 3, 15 | syl2anc 584 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (.r‘𝐴)) |
| 17 | 14, 16 | eqtr4id 2785 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → · = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)) |
| 18 | 17 | oveqd 7363 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) = (𝑋(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑌)) |
| 19 | 18 | tposeqd 8159 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → tpos (𝑋 · 𝑌) = tpos (𝑋(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑌)) |
| 20 | 17 | oveqd 7363 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (tpos 𝑌 · tpos 𝑋) = (tpos 𝑌(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)tpos 𝑋)) |
| 21 | 13, 19, 20 | 3eqtr4d 2776 | 1 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → tpos (𝑋 · 𝑌) = (tpos 𝑌 · tpos 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cotp 4584 × cxp 5614 ‘cfv 6481 (class class class)co 7346 tpos ctpos 8155 ↑m cmap 8750 Fincfn 8869 Basecbs 17120 .rcmulr 17162 CRingccrg 20153 maMul cmmul 22306 Mat cmat 22323 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-ot 4585 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-prds 17351 df-pws 17353 df-cmn 19695 df-mgp 20060 df-cring 20155 df-sra 21108 df-rgmod 21109 df-dsmm 21670 df-frlm 21685 df-mamu 22307 df-mat 22324 |
| This theorem is referenced by: madulid 22561 |
| Copyright terms: Public domain | W3C validator |