| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mattposm | Structured version Visualization version GIF version | ||
| Description: Multiplying two transposed matrices results in the transposition of the product of the two matrices. (Contributed by Stefan O'Rear, 17-Jul-2018.) |
| Ref | Expression |
|---|---|
| mattposm.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| mattposm.b | ⊢ 𝐵 = (Base‘𝐴) |
| mattposm.t | ⊢ · = (.r‘𝐴) |
| Ref | Expression |
|---|---|
| mattposm | ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → tpos (𝑋 · 𝑌) = (tpos 𝑌 · tpos 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) | |
| 2 | eqid 2729 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | simp1 1136 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ CRing) | |
| 4 | mattposm.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 5 | mattposm.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
| 6 | 4, 5 | matrcl 22299 | . . . . 5 ⊢ (𝑌 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 7 | 6 | simpld 494 | . . . 4 ⊢ (𝑌 ∈ 𝐵 → 𝑁 ∈ Fin) |
| 8 | 7 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑁 ∈ Fin) |
| 9 | 4, 2, 5 | matbas2i 22309 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
| 10 | 9 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
| 11 | 4, 2, 5 | matbas2i 22309 | . . . 4 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
| 12 | 11 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
| 13 | 1, 1, 2, 3, 8, 8, 8, 10, 12 | mamutpos 22345 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → tpos (𝑋(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑌) = (tpos 𝑌(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)tpos 𝑋)) |
| 14 | mattposm.t | . . . . 5 ⊢ · = (.r‘𝐴) | |
| 15 | 4, 1 | matmulr 22325 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (.r‘𝐴)) |
| 16 | 8, 3, 15 | syl2anc 584 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (.r‘𝐴)) |
| 17 | 14, 16 | eqtr4id 2783 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → · = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)) |
| 18 | 17 | oveqd 7404 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) = (𝑋(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑌)) |
| 19 | 18 | tposeqd 8208 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → tpos (𝑋 · 𝑌) = tpos (𝑋(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑌)) |
| 20 | 17 | oveqd 7404 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (tpos 𝑌 · tpos 𝑋) = (tpos 𝑌(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)tpos 𝑋)) |
| 21 | 13, 19, 20 | 3eqtr4d 2774 | 1 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → tpos (𝑋 · 𝑌) = (tpos 𝑌 · tpos 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3447 〈cotp 4597 × cxp 5636 ‘cfv 6511 (class class class)co 7387 tpos ctpos 8204 ↑m cmap 8799 Fincfn 8918 Basecbs 17179 .rcmulr 17221 CRingccrg 20143 maMul cmmul 22277 Mat cmat 22294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-ot 4598 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-hom 17244 df-cco 17245 df-0g 17404 df-prds 17410 df-pws 17412 df-cmn 19712 df-mgp 20050 df-cring 20145 df-sra 21080 df-rgmod 21081 df-dsmm 21641 df-frlm 21656 df-mamu 22278 df-mat 22295 |
| This theorem is referenced by: madulid 22532 |
| Copyright terms: Public domain | W3C validator |