MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppchomfpropd Structured version   Visualization version   GIF version

Theorem oppchomfpropd 17668
Description: If two categories have the same hom-sets, so do their opposites. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypothesis
Ref Expression
oppchomfpropd.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
Assertion
Ref Expression
oppchomfpropd (𝜑 → (Homf ‘(oppCat‘𝐶)) = (Homf ‘(oppCat‘𝐷)))

Proof of Theorem oppchomfpropd
StepHypRef Expression
1 oppchomfpropd.1 . . 3 (𝜑 → (Homf𝐶) = (Homf𝐷))
21tposeqd 8209 . 2 (𝜑 → tpos (Homf𝐶) = tpos (Homf𝐷))
3 eqid 2724 . . 3 (oppCat‘𝐶) = (oppCat‘𝐶)
4 eqid 2724 . . 3 (Homf𝐶) = (Homf𝐶)
53, 4oppchomf 17662 . 2 tpos (Homf𝐶) = (Homf ‘(oppCat‘𝐶))
6 eqid 2724 . . 3 (oppCat‘𝐷) = (oppCat‘𝐷)
7 eqid 2724 . . 3 (Homf𝐷) = (Homf𝐷)
86, 7oppchomf 17662 . 2 tpos (Homf𝐷) = (Homf ‘(oppCat‘𝐷))
92, 5, 83eqtr3g 2787 1 (𝜑 → (Homf ‘(oppCat‘𝐶)) = (Homf ‘(oppCat‘𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  cfv 6533  tpos ctpos 8205  Homf chomf 17606  oppCatcoppc 17651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-tpos 8206  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-hom 17217  df-cco 17218  df-homf 17610  df-oppc 17652
This theorem is referenced by:  oppccomfpropd  17669  yonpropd  18220
  Copyright terms: Public domain W3C validator