| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mattposvs | Structured version Visualization version GIF version | ||
| Description: The transposition of a matrix multiplied with a scalar equals the transposed matrix multiplied with the scalar, see also the statement in [Lang] p. 505. (Contributed by Stefan O'Rear, 17-Jul-2018.) |
| Ref | Expression |
|---|---|
| mattposvs.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| mattposvs.b | ⊢ 𝐵 = (Base‘𝐴) |
| mattposvs.k | ⊢ 𝐾 = (Base‘𝑅) |
| mattposvs.v | ⊢ · = ( ·𝑠 ‘𝐴) |
| Ref | Expression |
|---|---|
| mattposvs | ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → tpos (𝑋 · 𝑌) = (𝑋 · tpos 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mattposvs.a | . . . . . . . . 9 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | mattposvs.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | 1, 2 | matrcl 22306 | . . . . . . . 8 ⊢ (𝑌 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 4 | 3 | simpld 494 | . . . . . . 7 ⊢ (𝑌 ∈ 𝐵 → 𝑁 ∈ Fin) |
| 5 | sqxpexg 7734 | . . . . . . 7 ⊢ (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ V) | |
| 6 | 4, 5 | syl 17 | . . . . . 6 ⊢ (𝑌 ∈ 𝐵 → (𝑁 × 𝑁) ∈ V) |
| 7 | snex 5394 | . . . . . 6 ⊢ {𝑋} ∈ V | |
| 8 | xpexg 7729 | . . . . . 6 ⊢ (((𝑁 × 𝑁) ∈ V ∧ {𝑋} ∈ V) → ((𝑁 × 𝑁) × {𝑋}) ∈ V) | |
| 9 | 6, 7, 8 | sylancl 586 | . . . . 5 ⊢ (𝑌 ∈ 𝐵 → ((𝑁 × 𝑁) × {𝑋}) ∈ V) |
| 10 | oftpos 22346 | . . . . 5 ⊢ ((((𝑁 × 𝑁) × {𝑋}) ∈ V ∧ 𝑌 ∈ 𝐵) → tpos (((𝑁 × 𝑁) × {𝑋}) ∘f (.r‘𝑅)𝑌) = (tpos ((𝑁 × 𝑁) × {𝑋}) ∘f (.r‘𝑅)tpos 𝑌)) | |
| 11 | 9, 10 | mpancom 688 | . . . 4 ⊢ (𝑌 ∈ 𝐵 → tpos (((𝑁 × 𝑁) × {𝑋}) ∘f (.r‘𝑅)𝑌) = (tpos ((𝑁 × 𝑁) × {𝑋}) ∘f (.r‘𝑅)tpos 𝑌)) |
| 12 | tposconst 8246 | . . . . 5 ⊢ tpos ((𝑁 × 𝑁) × {𝑋}) = ((𝑁 × 𝑁) × {𝑋}) | |
| 13 | 12 | oveq1i 7400 | . . . 4 ⊢ (tpos ((𝑁 × 𝑁) × {𝑋}) ∘f (.r‘𝑅)tpos 𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f (.r‘𝑅)tpos 𝑌) |
| 14 | 11, 13 | eqtrdi 2781 | . . 3 ⊢ (𝑌 ∈ 𝐵 → tpos (((𝑁 × 𝑁) × {𝑋}) ∘f (.r‘𝑅)𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f (.r‘𝑅)tpos 𝑌)) |
| 15 | 14 | adantl 481 | . 2 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → tpos (((𝑁 × 𝑁) × {𝑋}) ∘f (.r‘𝑅)𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f (.r‘𝑅)tpos 𝑌)) |
| 16 | mattposvs.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
| 17 | mattposvs.v | . . . 4 ⊢ · = ( ·𝑠 ‘𝐴) | |
| 18 | eqid 2730 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 19 | eqid 2730 | . . . 4 ⊢ (𝑁 × 𝑁) = (𝑁 × 𝑁) | |
| 20 | 1, 2, 16, 17, 18, 19 | matvsca2 22322 | . . 3 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f (.r‘𝑅)𝑌)) |
| 21 | 20 | tposeqd 8211 | . 2 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → tpos (𝑋 · 𝑌) = tpos (((𝑁 × 𝑁) × {𝑋}) ∘f (.r‘𝑅)𝑌)) |
| 22 | 1, 2 | mattposcl 22347 | . . 3 ⊢ (𝑌 ∈ 𝐵 → tpos 𝑌 ∈ 𝐵) |
| 23 | 1, 2, 16, 17, 18, 19 | matvsca2 22322 | . . 3 ⊢ ((𝑋 ∈ 𝐾 ∧ tpos 𝑌 ∈ 𝐵) → (𝑋 · tpos 𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f (.r‘𝑅)tpos 𝑌)) |
| 24 | 22, 23 | sylan2 593 | . 2 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 · tpos 𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f (.r‘𝑅)tpos 𝑌)) |
| 25 | 15, 21, 24 | 3eqtr4d 2775 | 1 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → tpos (𝑋 · 𝑌) = (𝑋 · tpos 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 {csn 4592 × cxp 5639 ‘cfv 6514 (class class class)co 7390 ∘f cof 7654 tpos ctpos 8207 Fincfn 8921 Basecbs 17186 .rcmulr 17228 ·𝑠 cvsca 17231 Mat cmat 22301 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-ot 4601 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-hom 17251 df-cco 17252 df-0g 17411 df-prds 17417 df-pws 17419 df-sra 21087 df-rgmod 21088 df-dsmm 21648 df-frlm 21663 df-mat 22302 |
| This theorem is referenced by: madulid 22539 |
| Copyright terms: Public domain | W3C validator |