MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mattposvs Structured version   Visualization version   GIF version

Theorem mattposvs 22482
Description: The transposition of a matrix multiplied with a scalar equals the transposed matrix multiplied with the scalar, see also the statement in [Lang] p. 505. (Contributed by Stefan O'Rear, 17-Jul-2018.)
Hypotheses
Ref Expression
mattposvs.a 𝐴 = (𝑁 Mat 𝑅)
mattposvs.b 𝐵 = (Base‘𝐴)
mattposvs.k 𝐾 = (Base‘𝑅)
mattposvs.v · = ( ·𝑠𝐴)
Assertion
Ref Expression
mattposvs ((𝑋𝐾𝑌𝐵) → tpos (𝑋 · 𝑌) = (𝑋 · tpos 𝑌))

Proof of Theorem mattposvs
StepHypRef Expression
1 mattposvs.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
2 mattposvs.b . . . . . . . . 9 𝐵 = (Base‘𝐴)
31, 2matrcl 22437 . . . . . . . 8 (𝑌𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
43simpld 494 . . . . . . 7 (𝑌𝐵𝑁 ∈ Fin)
5 sqxpexg 7790 . . . . . . 7 (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ V)
64, 5syl 17 . . . . . 6 (𝑌𝐵 → (𝑁 × 𝑁) ∈ V)
7 snex 5451 . . . . . 6 {𝑋} ∈ V
8 xpexg 7785 . . . . . 6 (((𝑁 × 𝑁) ∈ V ∧ {𝑋} ∈ V) → ((𝑁 × 𝑁) × {𝑋}) ∈ V)
96, 7, 8sylancl 585 . . . . 5 (𝑌𝐵 → ((𝑁 × 𝑁) × {𝑋}) ∈ V)
10 oftpos 22479 . . . . 5 ((((𝑁 × 𝑁) × {𝑋}) ∈ V ∧ 𝑌𝐵) → tpos (((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)𝑌) = (tpos ((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)tpos 𝑌))
119, 10mpancom 687 . . . 4 (𝑌𝐵 → tpos (((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)𝑌) = (tpos ((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)tpos 𝑌))
12 tposconst 8305 . . . . 5 tpos ((𝑁 × 𝑁) × {𝑋}) = ((𝑁 × 𝑁) × {𝑋})
1312oveq1i 7458 . . . 4 (tpos ((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)tpos 𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)tpos 𝑌)
1411, 13eqtrdi 2796 . . 3 (𝑌𝐵 → tpos (((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)tpos 𝑌))
1514adantl 481 . 2 ((𝑋𝐾𝑌𝐵) → tpos (((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)tpos 𝑌))
16 mattposvs.k . . . 4 𝐾 = (Base‘𝑅)
17 mattposvs.v . . . 4 · = ( ·𝑠𝐴)
18 eqid 2740 . . . 4 (.r𝑅) = (.r𝑅)
19 eqid 2740 . . . 4 (𝑁 × 𝑁) = (𝑁 × 𝑁)
201, 2, 16, 17, 18, 19matvsca2 22455 . . 3 ((𝑋𝐾𝑌𝐵) → (𝑋 · 𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)𝑌))
2120tposeqd 8270 . 2 ((𝑋𝐾𝑌𝐵) → tpos (𝑋 · 𝑌) = tpos (((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)𝑌))
221, 2mattposcl 22480 . . 3 (𝑌𝐵 → tpos 𝑌𝐵)
231, 2, 16, 17, 18, 19matvsca2 22455 . . 3 ((𝑋𝐾 ∧ tpos 𝑌𝐵) → (𝑋 · tpos 𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)tpos 𝑌))
2422, 23sylan2 592 . 2 ((𝑋𝐾𝑌𝐵) → (𝑋 · tpos 𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)tpos 𝑌))
2515, 21, 243eqtr4d 2790 1 ((𝑋𝐾𝑌𝐵) → tpos (𝑋 · 𝑌) = (𝑋 · tpos 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  {csn 4648   × cxp 5698  cfv 6573  (class class class)co 7448  f cof 7712  tpos ctpos 8266  Fincfn 9003  Basecbs 17258  .rcmulr 17312   ·𝑠 cvsca 17315   Mat cmat 22432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-prds 17507  df-pws 17509  df-sra 21195  df-rgmod 21196  df-dsmm 21775  df-frlm 21790  df-mat 22433
This theorem is referenced by:  madulid  22672
  Copyright terms: Public domain W3C validator