MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mattposvs Structured version   Visualization version   GIF version

Theorem mattposvs 22358
Description: The transposition of a matrix multiplied with a scalar equals the transposed matrix multiplied with the scalar, see also the statement in [Lang] p. 505. (Contributed by Stefan O'Rear, 17-Jul-2018.)
Hypotheses
Ref Expression
mattposvs.a 𝐴 = (𝑁 Mat 𝑅)
mattposvs.b 𝐵 = (Base‘𝐴)
mattposvs.k 𝐾 = (Base‘𝑅)
mattposvs.v · = ( ·𝑠𝐴)
Assertion
Ref Expression
mattposvs ((𝑋𝐾𝑌𝐵) → tpos (𝑋 · 𝑌) = (𝑋 · tpos 𝑌))

Proof of Theorem mattposvs
StepHypRef Expression
1 mattposvs.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
2 mattposvs.b . . . . . . . . 9 𝐵 = (Base‘𝐴)
31, 2matrcl 22315 . . . . . . . 8 (𝑌𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
43simpld 494 . . . . . . 7 (𝑌𝐵𝑁 ∈ Fin)
5 sqxpexg 7695 . . . . . . 7 (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ V)
64, 5syl 17 . . . . . 6 (𝑌𝐵 → (𝑁 × 𝑁) ∈ V)
7 snex 5378 . . . . . 6 {𝑋} ∈ V
8 xpexg 7690 . . . . . 6 (((𝑁 × 𝑁) ∈ V ∧ {𝑋} ∈ V) → ((𝑁 × 𝑁) × {𝑋}) ∈ V)
96, 7, 8sylancl 586 . . . . 5 (𝑌𝐵 → ((𝑁 × 𝑁) × {𝑋}) ∈ V)
10 oftpos 22355 . . . . 5 ((((𝑁 × 𝑁) × {𝑋}) ∈ V ∧ 𝑌𝐵) → tpos (((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)𝑌) = (tpos ((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)tpos 𝑌))
119, 10mpancom 688 . . . 4 (𝑌𝐵 → tpos (((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)𝑌) = (tpos ((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)tpos 𝑌))
12 tposconst 8204 . . . . 5 tpos ((𝑁 × 𝑁) × {𝑋}) = ((𝑁 × 𝑁) × {𝑋})
1312oveq1i 7363 . . . 4 (tpos ((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)tpos 𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)tpos 𝑌)
1411, 13eqtrdi 2780 . . 3 (𝑌𝐵 → tpos (((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)tpos 𝑌))
1514adantl 481 . 2 ((𝑋𝐾𝑌𝐵) → tpos (((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)tpos 𝑌))
16 mattposvs.k . . . 4 𝐾 = (Base‘𝑅)
17 mattposvs.v . . . 4 · = ( ·𝑠𝐴)
18 eqid 2729 . . . 4 (.r𝑅) = (.r𝑅)
19 eqid 2729 . . . 4 (𝑁 × 𝑁) = (𝑁 × 𝑁)
201, 2, 16, 17, 18, 19matvsca2 22331 . . 3 ((𝑋𝐾𝑌𝐵) → (𝑋 · 𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)𝑌))
2120tposeqd 8169 . 2 ((𝑋𝐾𝑌𝐵) → tpos (𝑋 · 𝑌) = tpos (((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)𝑌))
221, 2mattposcl 22356 . . 3 (𝑌𝐵 → tpos 𝑌𝐵)
231, 2, 16, 17, 18, 19matvsca2 22331 . . 3 ((𝑋𝐾 ∧ tpos 𝑌𝐵) → (𝑋 · tpos 𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)tpos 𝑌))
2422, 23sylan2 593 . 2 ((𝑋𝐾𝑌𝐵) → (𝑋 · tpos 𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f (.r𝑅)tpos 𝑌))
2515, 21, 243eqtr4d 2774 1 ((𝑋𝐾𝑌𝐵) → tpos (𝑋 · 𝑌) = (𝑋 · tpos 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  {csn 4579   × cxp 5621  cfv 6486  (class class class)co 7353  f cof 7615  tpos ctpos 8165  Fincfn 8879  Basecbs 17138  .rcmulr 17180   ·𝑠 cvsca 17183   Mat cmat 22310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-0g 17363  df-prds 17369  df-pws 17371  df-sra 21095  df-rgmod 21096  df-dsmm 21657  df-frlm 21672  df-mat 22311
This theorem is referenced by:  madulid  22548
  Copyright terms: Public domain W3C validator