MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamutpos Structured version   Visualization version   GIF version

Theorem mamutpos 20589
Description: Behavior of transposes in matrix products, see also the statement in [Lang] p. 505. (Contributed by Stefan O'Rear, 9-Jul-2018.)
Hypotheses
Ref Expression
mamutpos.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
mamutpos.g 𝐺 = (𝑅 maMul ⟨𝑃, 𝑁, 𝑀⟩)
mamutpos.b 𝐵 = (Base‘𝑅)
mamutpos.r (𝜑𝑅 ∈ CRing)
mamutpos.m (𝜑𝑀 ∈ Fin)
mamutpos.n (𝜑𝑁 ∈ Fin)
mamutpos.p (𝜑𝑃 ∈ Fin)
mamutpos.x (𝜑𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
mamutpos.y (𝜑𝑌 ∈ (𝐵𝑚 (𝑁 × 𝑃)))
Assertion
Ref Expression
mamutpos (𝜑 → tpos (𝑋𝐹𝑌) = (tpos 𝑌𝐺tpos 𝑋))

Proof of Theorem mamutpos
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2800 . . . 4 (𝑗𝑀, 𝑖𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖))))) = (𝑗𝑀, 𝑖𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖)))))
21tposmpt2 7628 . . 3 tpos (𝑗𝑀, 𝑖𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖))))) = (𝑖𝑃, 𝑗𝑀 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖)))))
3 simpl1 1243 . . . . . . . . 9 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → 𝜑)
4 mamutpos.r . . . . . . . . 9 (𝜑𝑅 ∈ CRing)
53, 4syl 17 . . . . . . . 8 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → 𝑅 ∈ CRing)
6 mamutpos.x . . . . . . . . . 10 (𝜑𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
7 elmapi 8118 . . . . . . . . . 10 (𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
83, 6, 73syl 18 . . . . . . . . 9 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
9 simpl3 1247 . . . . . . . . 9 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → 𝑗𝑀)
10 simpr 478 . . . . . . . . 9 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → 𝑘𝑁)
118, 9, 10fovrnd 7041 . . . . . . . 8 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → (𝑗𝑋𝑘) ∈ 𝐵)
12 mamutpos.y . . . . . . . . . 10 (𝜑𝑌 ∈ (𝐵𝑚 (𝑁 × 𝑃)))
13 elmapi 8118 . . . . . . . . . 10 (𝑌 ∈ (𝐵𝑚 (𝑁 × 𝑃)) → 𝑌:(𝑁 × 𝑃)⟶𝐵)
143, 12, 133syl 18 . . . . . . . . 9 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → 𝑌:(𝑁 × 𝑃)⟶𝐵)
15 simpl2 1245 . . . . . . . . 9 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → 𝑖𝑃)
1614, 10, 15fovrnd 7041 . . . . . . . 8 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → (𝑘𝑌𝑖) ∈ 𝐵)
17 mamutpos.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
18 eqid 2800 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
1917, 18crngcom 18877 . . . . . . . 8 ((𝑅 ∈ CRing ∧ (𝑗𝑋𝑘) ∈ 𝐵 ∧ (𝑘𝑌𝑖) ∈ 𝐵) → ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖)) = ((𝑘𝑌𝑖)(.r𝑅)(𝑗𝑋𝑘)))
205, 11, 16, 19syl3anc 1491 . . . . . . 7 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖)) = ((𝑘𝑌𝑖)(.r𝑅)(𝑗𝑋𝑘)))
21 ovtpos 7606 . . . . . . . 8 (𝑖tpos 𝑌𝑘) = (𝑘𝑌𝑖)
22 ovtpos 7606 . . . . . . . 8 (𝑘tpos 𝑋𝑗) = (𝑗𝑋𝑘)
2321, 22oveq12i 6891 . . . . . . 7 ((𝑖tpos 𝑌𝑘)(.r𝑅)(𝑘tpos 𝑋𝑗)) = ((𝑘𝑌𝑖)(.r𝑅)(𝑗𝑋𝑘))
2420, 23syl6eqr 2852 . . . . . 6 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖)) = ((𝑖tpos 𝑌𝑘)(.r𝑅)(𝑘tpos 𝑋𝑗)))
2524mpteq2dva 4938 . . . . 5 ((𝜑𝑖𝑃𝑗𝑀) → (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖))) = (𝑘𝑁 ↦ ((𝑖tpos 𝑌𝑘)(.r𝑅)(𝑘tpos 𝑋𝑗))))
2625oveq2d 6895 . . . 4 ((𝜑𝑖𝑃𝑗𝑀) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖)))) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖tpos 𝑌𝑘)(.r𝑅)(𝑘tpos 𝑋𝑗)))))
2726mpt2eq3dva 6954 . . 3 (𝜑 → (𝑖𝑃, 𝑗𝑀 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖))))) = (𝑖𝑃, 𝑗𝑀 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖tpos 𝑌𝑘)(.r𝑅)(𝑘tpos 𝑋𝑗))))))
282, 27syl5eq 2846 . 2 (𝜑 → tpos (𝑗𝑀, 𝑖𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖))))) = (𝑖𝑃, 𝑗𝑀 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖tpos 𝑌𝑘)(.r𝑅)(𝑘tpos 𝑋𝑗))))))
29 mamutpos.f . . . 4 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
30 mamutpos.m . . . 4 (𝜑𝑀 ∈ Fin)
31 mamutpos.n . . . 4 (𝜑𝑁 ∈ Fin)
32 mamutpos.p . . . 4 (𝜑𝑃 ∈ Fin)
3329, 17, 18, 4, 30, 31, 32, 6, 12mamuval 20516 . . 3 (𝜑 → (𝑋𝐹𝑌) = (𝑗𝑀, 𝑖𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖))))))
3433tposeqd 7594 . 2 (𝜑 → tpos (𝑋𝐹𝑌) = tpos (𝑗𝑀, 𝑖𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖))))))
35 mamutpos.g . . 3 𝐺 = (𝑅 maMul ⟨𝑃, 𝑁, 𝑀⟩)
36 tposmap 20588 . . . 4 (𝑌 ∈ (𝐵𝑚 (𝑁 × 𝑃)) → tpos 𝑌 ∈ (𝐵𝑚 (𝑃 × 𝑁)))
3712, 36syl 17 . . 3 (𝜑 → tpos 𝑌 ∈ (𝐵𝑚 (𝑃 × 𝑁)))
38 tposmap 20588 . . . 4 (𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)) → tpos 𝑋 ∈ (𝐵𝑚 (𝑁 × 𝑀)))
396, 38syl 17 . . 3 (𝜑 → tpos 𝑋 ∈ (𝐵𝑚 (𝑁 × 𝑀)))
4035, 17, 18, 4, 32, 31, 30, 37, 39mamuval 20516 . 2 (𝜑 → (tpos 𝑌𝐺tpos 𝑋) = (𝑖𝑃, 𝑗𝑀 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖tpos 𝑌𝑘)(.r𝑅)(𝑘tpos 𝑋𝑗))))))
4128, 34, 403eqtr4d 2844 1 (𝜑 → tpos (𝑋𝐹𝑌) = (tpos 𝑌𝐺tpos 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  w3a 1108   = wceq 1653  wcel 2157  cotp 4377  cmpt 4923   × cxp 5311  wf 6098  cfv 6102  (class class class)co 6879  cmpt2 6881  tpos ctpos 7590  𝑚 cmap 8096  Fincfn 8196  Basecbs 16183  .rcmulr 16267   Σg cgsu 16415  CRingccrg 18863   maMul cmmul 20513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-rep 4965  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098  ax-un 7184  ax-cnex 10281  ax-resscn 10282  ax-1cn 10283  ax-icn 10284  ax-addcl 10285  ax-addrcl 10286  ax-mulcl 10287  ax-mulrcl 10288  ax-mulcom 10289  ax-addass 10290  ax-mulass 10291  ax-distr 10292  ax-i2m1 10293  ax-1ne0 10294  ax-1rid 10295  ax-rnegex 10296  ax-rrecex 10297  ax-cnre 10298  ax-pre-lttri 10299  ax-pre-lttrn 10300  ax-pre-ltadd 10301  ax-pre-mulgt0 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3388  df-sbc 3635  df-csb 3730  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-pss 3786  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-tp 4374  df-op 4376  df-ot 4378  df-uni 4630  df-iun 4713  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5221  df-eprel 5226  df-po 5234  df-so 5235  df-fr 5272  df-we 5274  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-pred 5899  df-ord 5945  df-on 5946  df-lim 5947  df-suc 5948  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-f1 6107  df-fo 6108  df-f1o 6109  df-fv 6110  df-riota 6840  df-ov 6882  df-oprab 6883  df-mpt2 6884  df-om 7301  df-1st 7402  df-2nd 7403  df-tpos 7591  df-wrecs 7646  df-recs 7708  df-rdg 7746  df-er 7983  df-map 8098  df-en 8197  df-dom 8198  df-sdom 8199  df-pnf 10366  df-mnf 10367  df-xr 10368  df-ltxr 10369  df-le 10370  df-sub 10559  df-neg 10560  df-nn 11314  df-2 11375  df-ndx 16186  df-slot 16187  df-base 16189  df-sets 16190  df-plusg 16279  df-cmn 18509  df-mgp 18805  df-cring 18865  df-mamu 20514
This theorem is referenced by:  mattposm  20590
  Copyright terms: Public domain W3C validator