MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamutpos Structured version   Visualization version   GIF version

Theorem mamutpos 22404
Description: Behavior of transposes in matrix products, see also the statement in [Lang] p. 505. (Contributed by Stefan O'Rear, 9-Jul-2018.)
Hypotheses
Ref Expression
mamutpos.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
mamutpos.g 𝐺 = (𝑅 maMul ⟨𝑃, 𝑁, 𝑀⟩)
mamutpos.b 𝐵 = (Base‘𝑅)
mamutpos.r (𝜑𝑅 ∈ CRing)
mamutpos.m (𝜑𝑀 ∈ Fin)
mamutpos.n (𝜑𝑁 ∈ Fin)
mamutpos.p (𝜑𝑃 ∈ Fin)
mamutpos.x (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
mamutpos.y (𝜑𝑌 ∈ (𝐵m (𝑁 × 𝑃)))
Assertion
Ref Expression
mamutpos (𝜑 → tpos (𝑋𝐹𝑌) = (tpos 𝑌𝐺tpos 𝑋))

Proof of Theorem mamutpos
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2725 . . . 4 (𝑗𝑀, 𝑖𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖))))) = (𝑗𝑀, 𝑖𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖)))))
21tposmpo 8269 . . 3 tpos (𝑗𝑀, 𝑖𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖))))) = (𝑖𝑃, 𝑗𝑀 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖)))))
3 simpl1 1188 . . . . . . . . 9 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → 𝜑)
4 mamutpos.r . . . . . . . . 9 (𝜑𝑅 ∈ CRing)
53, 4syl 17 . . . . . . . 8 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → 𝑅 ∈ CRing)
6 mamutpos.x . . . . . . . . . 10 (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
7 elmapi 8868 . . . . . . . . . 10 (𝑋 ∈ (𝐵m (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
83, 6, 73syl 18 . . . . . . . . 9 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
9 simpl3 1190 . . . . . . . . 9 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → 𝑗𝑀)
10 simpr 483 . . . . . . . . 9 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → 𝑘𝑁)
118, 9, 10fovcdmd 7593 . . . . . . . 8 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → (𝑗𝑋𝑘) ∈ 𝐵)
12 mamutpos.y . . . . . . . . . 10 (𝜑𝑌 ∈ (𝐵m (𝑁 × 𝑃)))
13 elmapi 8868 . . . . . . . . . 10 (𝑌 ∈ (𝐵m (𝑁 × 𝑃)) → 𝑌:(𝑁 × 𝑃)⟶𝐵)
143, 12, 133syl 18 . . . . . . . . 9 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → 𝑌:(𝑁 × 𝑃)⟶𝐵)
15 simpl2 1189 . . . . . . . . 9 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → 𝑖𝑃)
1614, 10, 15fovcdmd 7593 . . . . . . . 8 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → (𝑘𝑌𝑖) ∈ 𝐵)
17 mamutpos.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
18 eqid 2725 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
1917, 18crngcom 20203 . . . . . . . 8 ((𝑅 ∈ CRing ∧ (𝑗𝑋𝑘) ∈ 𝐵 ∧ (𝑘𝑌𝑖) ∈ 𝐵) → ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖)) = ((𝑘𝑌𝑖)(.r𝑅)(𝑗𝑋𝑘)))
205, 11, 16, 19syl3anc 1368 . . . . . . 7 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖)) = ((𝑘𝑌𝑖)(.r𝑅)(𝑗𝑋𝑘)))
21 ovtpos 8247 . . . . . . . 8 (𝑖tpos 𝑌𝑘) = (𝑘𝑌𝑖)
22 ovtpos 8247 . . . . . . . 8 (𝑘tpos 𝑋𝑗) = (𝑗𝑋𝑘)
2321, 22oveq12i 7431 . . . . . . 7 ((𝑖tpos 𝑌𝑘)(.r𝑅)(𝑘tpos 𝑋𝑗)) = ((𝑘𝑌𝑖)(.r𝑅)(𝑗𝑋𝑘))
2420, 23eqtr4di 2783 . . . . . 6 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖)) = ((𝑖tpos 𝑌𝑘)(.r𝑅)(𝑘tpos 𝑋𝑗)))
2524mpteq2dva 5249 . . . . 5 ((𝜑𝑖𝑃𝑗𝑀) → (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖))) = (𝑘𝑁 ↦ ((𝑖tpos 𝑌𝑘)(.r𝑅)(𝑘tpos 𝑋𝑗))))
2625oveq2d 7435 . . . 4 ((𝜑𝑖𝑃𝑗𝑀) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖)))) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖tpos 𝑌𝑘)(.r𝑅)(𝑘tpos 𝑋𝑗)))))
2726mpoeq3dva 7497 . . 3 (𝜑 → (𝑖𝑃, 𝑗𝑀 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖))))) = (𝑖𝑃, 𝑗𝑀 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖tpos 𝑌𝑘)(.r𝑅)(𝑘tpos 𝑋𝑗))))))
282, 27eqtrid 2777 . 2 (𝜑 → tpos (𝑗𝑀, 𝑖𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖))))) = (𝑖𝑃, 𝑗𝑀 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖tpos 𝑌𝑘)(.r𝑅)(𝑘tpos 𝑋𝑗))))))
29 mamutpos.f . . . 4 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
30 mamutpos.m . . . 4 (𝜑𝑀 ∈ Fin)
31 mamutpos.n . . . 4 (𝜑𝑁 ∈ Fin)
32 mamutpos.p . . . 4 (𝜑𝑃 ∈ Fin)
3329, 17, 18, 4, 30, 31, 32, 6, 12mamuval 22337 . . 3 (𝜑 → (𝑋𝐹𝑌) = (𝑗𝑀, 𝑖𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖))))))
3433tposeqd 8235 . 2 (𝜑 → tpos (𝑋𝐹𝑌) = tpos (𝑗𝑀, 𝑖𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖))))))
35 mamutpos.g . . 3 𝐺 = (𝑅 maMul ⟨𝑃, 𝑁, 𝑀⟩)
36 tposmap 22403 . . . 4 (𝑌 ∈ (𝐵m (𝑁 × 𝑃)) → tpos 𝑌 ∈ (𝐵m (𝑃 × 𝑁)))
3712, 36syl 17 . . 3 (𝜑 → tpos 𝑌 ∈ (𝐵m (𝑃 × 𝑁)))
38 tposmap 22403 . . . 4 (𝑋 ∈ (𝐵m (𝑀 × 𝑁)) → tpos 𝑋 ∈ (𝐵m (𝑁 × 𝑀)))
396, 38syl 17 . . 3 (𝜑 → tpos 𝑋 ∈ (𝐵m (𝑁 × 𝑀)))
4035, 17, 18, 4, 32, 31, 30, 37, 39mamuval 22337 . 2 (𝜑 → (tpos 𝑌𝐺tpos 𝑋) = (𝑖𝑃, 𝑗𝑀 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖tpos 𝑌𝑘)(.r𝑅)(𝑘tpos 𝑋𝑗))))))
4128, 34, 403eqtr4d 2775 1 (𝜑 → tpos (𝑋𝐹𝑌) = (tpos 𝑌𝐺tpos 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  cotp 4638  cmpt 5232   × cxp 5676  wf 6545  cfv 6549  (class class class)co 7419  cmpo 7421  tpos ctpos 8231  m cmap 8845  Fincfn 8964  Basecbs 17183  .rcmulr 17237   Σg cgsu 17425  CRingccrg 20186   maMul cmmul 22334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-ot 4639  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-plusg 17249  df-cmn 19749  df-mgp 20087  df-cring 20188  df-mamu 22335
This theorem is referenced by:  mattposm  22405
  Copyright terms: Public domain W3C validator