MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamutpos Structured version   Visualization version   GIF version

Theorem mamutpos 21607
Description: Behavior of transposes in matrix products, see also the statement in [Lang] p. 505. (Contributed by Stefan O'Rear, 9-Jul-2018.)
Hypotheses
Ref Expression
mamutpos.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
mamutpos.g 𝐺 = (𝑅 maMul ⟨𝑃, 𝑁, 𝑀⟩)
mamutpos.b 𝐵 = (Base‘𝑅)
mamutpos.r (𝜑𝑅 ∈ CRing)
mamutpos.m (𝜑𝑀 ∈ Fin)
mamutpos.n (𝜑𝑁 ∈ Fin)
mamutpos.p (𝜑𝑃 ∈ Fin)
mamutpos.x (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
mamutpos.y (𝜑𝑌 ∈ (𝐵m (𝑁 × 𝑃)))
Assertion
Ref Expression
mamutpos (𝜑 → tpos (𝑋𝐹𝑌) = (tpos 𝑌𝐺tpos 𝑋))

Proof of Theorem mamutpos
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 (𝑗𝑀, 𝑖𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖))))) = (𝑗𝑀, 𝑖𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖)))))
21tposmpo 8079 . . 3 tpos (𝑗𝑀, 𝑖𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖))))) = (𝑖𝑃, 𝑗𝑀 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖)))))
3 simpl1 1190 . . . . . . . . 9 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → 𝜑)
4 mamutpos.r . . . . . . . . 9 (𝜑𝑅 ∈ CRing)
53, 4syl 17 . . . . . . . 8 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → 𝑅 ∈ CRing)
6 mamutpos.x . . . . . . . . . 10 (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
7 elmapi 8637 . . . . . . . . . 10 (𝑋 ∈ (𝐵m (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
83, 6, 73syl 18 . . . . . . . . 9 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
9 simpl3 1192 . . . . . . . . 9 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → 𝑗𝑀)
10 simpr 485 . . . . . . . . 9 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → 𝑘𝑁)
118, 9, 10fovrnd 7444 . . . . . . . 8 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → (𝑗𝑋𝑘) ∈ 𝐵)
12 mamutpos.y . . . . . . . . . 10 (𝜑𝑌 ∈ (𝐵m (𝑁 × 𝑃)))
13 elmapi 8637 . . . . . . . . . 10 (𝑌 ∈ (𝐵m (𝑁 × 𝑃)) → 𝑌:(𝑁 × 𝑃)⟶𝐵)
143, 12, 133syl 18 . . . . . . . . 9 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → 𝑌:(𝑁 × 𝑃)⟶𝐵)
15 simpl2 1191 . . . . . . . . 9 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → 𝑖𝑃)
1614, 10, 15fovrnd 7444 . . . . . . . 8 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → (𝑘𝑌𝑖) ∈ 𝐵)
17 mamutpos.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
18 eqid 2738 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
1917, 18crngcom 19801 . . . . . . . 8 ((𝑅 ∈ CRing ∧ (𝑗𝑋𝑘) ∈ 𝐵 ∧ (𝑘𝑌𝑖) ∈ 𝐵) → ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖)) = ((𝑘𝑌𝑖)(.r𝑅)(𝑗𝑋𝑘)))
205, 11, 16, 19syl3anc 1370 . . . . . . 7 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖)) = ((𝑘𝑌𝑖)(.r𝑅)(𝑗𝑋𝑘)))
21 ovtpos 8057 . . . . . . . 8 (𝑖tpos 𝑌𝑘) = (𝑘𝑌𝑖)
22 ovtpos 8057 . . . . . . . 8 (𝑘tpos 𝑋𝑗) = (𝑗𝑋𝑘)
2321, 22oveq12i 7287 . . . . . . 7 ((𝑖tpos 𝑌𝑘)(.r𝑅)(𝑘tpos 𝑋𝑗)) = ((𝑘𝑌𝑖)(.r𝑅)(𝑗𝑋𝑘))
2420, 23eqtr4di 2796 . . . . . 6 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖)) = ((𝑖tpos 𝑌𝑘)(.r𝑅)(𝑘tpos 𝑋𝑗)))
2524mpteq2dva 5174 . . . . 5 ((𝜑𝑖𝑃𝑗𝑀) → (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖))) = (𝑘𝑁 ↦ ((𝑖tpos 𝑌𝑘)(.r𝑅)(𝑘tpos 𝑋𝑗))))
2625oveq2d 7291 . . . 4 ((𝜑𝑖𝑃𝑗𝑀) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖)))) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖tpos 𝑌𝑘)(.r𝑅)(𝑘tpos 𝑋𝑗)))))
2726mpoeq3dva 7352 . . 3 (𝜑 → (𝑖𝑃, 𝑗𝑀 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖))))) = (𝑖𝑃, 𝑗𝑀 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖tpos 𝑌𝑘)(.r𝑅)(𝑘tpos 𝑋𝑗))))))
282, 27eqtrid 2790 . 2 (𝜑 → tpos (𝑗𝑀, 𝑖𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖))))) = (𝑖𝑃, 𝑗𝑀 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖tpos 𝑌𝑘)(.r𝑅)(𝑘tpos 𝑋𝑗))))))
29 mamutpos.f . . . 4 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
30 mamutpos.m . . . 4 (𝜑𝑀 ∈ Fin)
31 mamutpos.n . . . 4 (𝜑𝑁 ∈ Fin)
32 mamutpos.p . . . 4 (𝜑𝑃 ∈ Fin)
3329, 17, 18, 4, 30, 31, 32, 6, 12mamuval 21535 . . 3 (𝜑 → (𝑋𝐹𝑌) = (𝑗𝑀, 𝑖𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖))))))
3433tposeqd 8045 . 2 (𝜑 → tpos (𝑋𝐹𝑌) = tpos (𝑗𝑀, 𝑖𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖))))))
35 mamutpos.g . . 3 𝐺 = (𝑅 maMul ⟨𝑃, 𝑁, 𝑀⟩)
36 tposmap 21606 . . . 4 (𝑌 ∈ (𝐵m (𝑁 × 𝑃)) → tpos 𝑌 ∈ (𝐵m (𝑃 × 𝑁)))
3712, 36syl 17 . . 3 (𝜑 → tpos 𝑌 ∈ (𝐵m (𝑃 × 𝑁)))
38 tposmap 21606 . . . 4 (𝑋 ∈ (𝐵m (𝑀 × 𝑁)) → tpos 𝑋 ∈ (𝐵m (𝑁 × 𝑀)))
396, 38syl 17 . . 3 (𝜑 → tpos 𝑋 ∈ (𝐵m (𝑁 × 𝑀)))
4035, 17, 18, 4, 32, 31, 30, 37, 39mamuval 21535 . 2 (𝜑 → (tpos 𝑌𝐺tpos 𝑋) = (𝑖𝑃, 𝑗𝑀 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖tpos 𝑌𝑘)(.r𝑅)(𝑘tpos 𝑋𝑗))))))
4128, 34, 403eqtr4d 2788 1 (𝜑 → tpos (𝑋𝐹𝑌) = (tpos 𝑌𝐺tpos 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  cotp 4569  cmpt 5157   × cxp 5587  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  tpos ctpos 8041  m cmap 8615  Fincfn 8733  Basecbs 16912  .rcmulr 16963   Σg cgsu 17151  CRingccrg 19784   maMul cmmul 21532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-ot 4570  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-cmn 19388  df-mgp 19721  df-cring 19786  df-mamu 21533
This theorem is referenced by:  mattposm  21608
  Copyright terms: Public domain W3C validator