MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamutpos Structured version   Visualization version   GIF version

Theorem mamutpos 22352
Description: Behavior of transposes in matrix products, see also the statement in [Lang] p. 505. (Contributed by Stefan O'Rear, 9-Jul-2018.)
Hypotheses
Ref Expression
mamutpos.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
mamutpos.g 𝐺 = (𝑅 maMul ⟨𝑃, 𝑁, 𝑀⟩)
mamutpos.b 𝐵 = (Base‘𝑅)
mamutpos.r (𝜑𝑅 ∈ CRing)
mamutpos.m (𝜑𝑀 ∈ Fin)
mamutpos.n (𝜑𝑁 ∈ Fin)
mamutpos.p (𝜑𝑃 ∈ Fin)
mamutpos.x (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
mamutpos.y (𝜑𝑌 ∈ (𝐵m (𝑁 × 𝑃)))
Assertion
Ref Expression
mamutpos (𝜑 → tpos (𝑋𝐹𝑌) = (tpos 𝑌𝐺tpos 𝑋))

Proof of Theorem mamutpos
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . 4 (𝑗𝑀, 𝑖𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖))))) = (𝑗𝑀, 𝑖𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖)))))
21tposmpo 8245 . . 3 tpos (𝑗𝑀, 𝑖𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖))))) = (𝑖𝑃, 𝑗𝑀 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖)))))
3 simpl1 1192 . . . . . . . . 9 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → 𝜑)
4 mamutpos.r . . . . . . . . 9 (𝜑𝑅 ∈ CRing)
53, 4syl 17 . . . . . . . 8 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → 𝑅 ∈ CRing)
6 mamutpos.x . . . . . . . . . 10 (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
7 elmapi 8825 . . . . . . . . . 10 (𝑋 ∈ (𝐵m (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
83, 6, 73syl 18 . . . . . . . . 9 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
9 simpl3 1194 . . . . . . . . 9 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → 𝑗𝑀)
10 simpr 484 . . . . . . . . 9 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → 𝑘𝑁)
118, 9, 10fovcdmd 7564 . . . . . . . 8 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → (𝑗𝑋𝑘) ∈ 𝐵)
12 mamutpos.y . . . . . . . . . 10 (𝜑𝑌 ∈ (𝐵m (𝑁 × 𝑃)))
13 elmapi 8825 . . . . . . . . . 10 (𝑌 ∈ (𝐵m (𝑁 × 𝑃)) → 𝑌:(𝑁 × 𝑃)⟶𝐵)
143, 12, 133syl 18 . . . . . . . . 9 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → 𝑌:(𝑁 × 𝑃)⟶𝐵)
15 simpl2 1193 . . . . . . . . 9 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → 𝑖𝑃)
1614, 10, 15fovcdmd 7564 . . . . . . . 8 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → (𝑘𝑌𝑖) ∈ 𝐵)
17 mamutpos.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
18 eqid 2730 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
1917, 18crngcom 20167 . . . . . . . 8 ((𝑅 ∈ CRing ∧ (𝑗𝑋𝑘) ∈ 𝐵 ∧ (𝑘𝑌𝑖) ∈ 𝐵) → ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖)) = ((𝑘𝑌𝑖)(.r𝑅)(𝑗𝑋𝑘)))
205, 11, 16, 19syl3anc 1373 . . . . . . 7 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖)) = ((𝑘𝑌𝑖)(.r𝑅)(𝑗𝑋𝑘)))
21 ovtpos 8223 . . . . . . . 8 (𝑖tpos 𝑌𝑘) = (𝑘𝑌𝑖)
22 ovtpos 8223 . . . . . . . 8 (𝑘tpos 𝑋𝑗) = (𝑗𝑋𝑘)
2321, 22oveq12i 7402 . . . . . . 7 ((𝑖tpos 𝑌𝑘)(.r𝑅)(𝑘tpos 𝑋𝑗)) = ((𝑘𝑌𝑖)(.r𝑅)(𝑗𝑋𝑘))
2420, 23eqtr4di 2783 . . . . . 6 (((𝜑𝑖𝑃𝑗𝑀) ∧ 𝑘𝑁) → ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖)) = ((𝑖tpos 𝑌𝑘)(.r𝑅)(𝑘tpos 𝑋𝑗)))
2524mpteq2dva 5203 . . . . 5 ((𝜑𝑖𝑃𝑗𝑀) → (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖))) = (𝑘𝑁 ↦ ((𝑖tpos 𝑌𝑘)(.r𝑅)(𝑘tpos 𝑋𝑗))))
2625oveq2d 7406 . . . 4 ((𝜑𝑖𝑃𝑗𝑀) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖)))) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖tpos 𝑌𝑘)(.r𝑅)(𝑘tpos 𝑋𝑗)))))
2726mpoeq3dva 7469 . . 3 (𝜑 → (𝑖𝑃, 𝑗𝑀 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖))))) = (𝑖𝑃, 𝑗𝑀 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖tpos 𝑌𝑘)(.r𝑅)(𝑘tpos 𝑋𝑗))))))
282, 27eqtrid 2777 . 2 (𝜑 → tpos (𝑗𝑀, 𝑖𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖))))) = (𝑖𝑃, 𝑗𝑀 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖tpos 𝑌𝑘)(.r𝑅)(𝑘tpos 𝑋𝑗))))))
29 mamutpos.f . . . 4 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
30 mamutpos.m . . . 4 (𝜑𝑀 ∈ Fin)
31 mamutpos.n . . . 4 (𝜑𝑁 ∈ Fin)
32 mamutpos.p . . . 4 (𝜑𝑃 ∈ Fin)
3329, 17, 18, 4, 30, 31, 32, 6, 12mamuval 22287 . . 3 (𝜑 → (𝑋𝐹𝑌) = (𝑗𝑀, 𝑖𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖))))))
3433tposeqd 8211 . 2 (𝜑 → tpos (𝑋𝐹𝑌) = tpos (𝑗𝑀, 𝑖𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑗𝑋𝑘)(.r𝑅)(𝑘𝑌𝑖))))))
35 mamutpos.g . . 3 𝐺 = (𝑅 maMul ⟨𝑃, 𝑁, 𝑀⟩)
36 tposmap 22351 . . . 4 (𝑌 ∈ (𝐵m (𝑁 × 𝑃)) → tpos 𝑌 ∈ (𝐵m (𝑃 × 𝑁)))
3712, 36syl 17 . . 3 (𝜑 → tpos 𝑌 ∈ (𝐵m (𝑃 × 𝑁)))
38 tposmap 22351 . . . 4 (𝑋 ∈ (𝐵m (𝑀 × 𝑁)) → tpos 𝑋 ∈ (𝐵m (𝑁 × 𝑀)))
396, 38syl 17 . . 3 (𝜑 → tpos 𝑋 ∈ (𝐵m (𝑁 × 𝑀)))
4035, 17, 18, 4, 32, 31, 30, 37, 39mamuval 22287 . 2 (𝜑 → (tpos 𝑌𝐺tpos 𝑋) = (𝑖𝑃, 𝑗𝑀 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖tpos 𝑌𝑘)(.r𝑅)(𝑘tpos 𝑋𝑗))))))
4128, 34, 403eqtr4d 2775 1 (𝜑 → tpos (𝑋𝐹𝑌) = (tpos 𝑌𝐺tpos 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cotp 4600  cmpt 5191   × cxp 5639  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  tpos ctpos 8207  m cmap 8802  Fincfn 8921  Basecbs 17186  .rcmulr 17228   Σg cgsu 17410  CRingccrg 20150   maMul cmmul 22284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-ot 4601  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-cmn 19719  df-mgp 20057  df-cring 20152  df-mamu 22285
This theorem is referenced by:  mattposm  22353
  Copyright terms: Public domain W3C validator