MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppcmon Structured version   Visualization version   GIF version

Theorem oppcmon 17700
Description: A monomorphism in the opposite category is an epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
oppcmon.o 𝑂 = (oppCat‘𝐶)
oppcmon.c (𝜑𝐶 ∈ Cat)
oppcmon.m 𝑀 = (Mono‘𝑂)
oppcmon.e 𝐸 = (Epi‘𝐶)
Assertion
Ref Expression
oppcmon (𝜑 → (𝑋𝑀𝑌) = (𝑌𝐸𝑋))

Proof of Theorem oppcmon
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 oppcmon.e . . . 4 𝐸 = (Epi‘𝐶)
2 oppcmon.c . . . . 5 (𝜑𝐶 ∈ Cat)
3 fveq2 6858 . . . . . . . . . 10 (𝑐 = 𝐶 → (oppCat‘𝑐) = (oppCat‘𝐶))
4 oppcmon.o . . . . . . . . . 10 𝑂 = (oppCat‘𝐶)
53, 4eqtr4di 2782 . . . . . . . . 9 (𝑐 = 𝐶 → (oppCat‘𝑐) = 𝑂)
65fveq2d 6862 . . . . . . . 8 (𝑐 = 𝐶 → (Mono‘(oppCat‘𝑐)) = (Mono‘𝑂))
7 oppcmon.m . . . . . . . 8 𝑀 = (Mono‘𝑂)
86, 7eqtr4di 2782 . . . . . . 7 (𝑐 = 𝐶 → (Mono‘(oppCat‘𝑐)) = 𝑀)
98tposeqd 8208 . . . . . 6 (𝑐 = 𝐶 → tpos (Mono‘(oppCat‘𝑐)) = tpos 𝑀)
10 df-epi 17693 . . . . . 6 Epi = (𝑐 ∈ Cat ↦ tpos (Mono‘(oppCat‘𝑐)))
117fvexi 6872 . . . . . . 7 𝑀 ∈ V
1211tposex 8239 . . . . . 6 tpos 𝑀 ∈ V
139, 10, 12fvmpt 6968 . . . . 5 (𝐶 ∈ Cat → (Epi‘𝐶) = tpos 𝑀)
142, 13syl 17 . . . 4 (𝜑 → (Epi‘𝐶) = tpos 𝑀)
151, 14eqtrid 2776 . . 3 (𝜑𝐸 = tpos 𝑀)
1615oveqd 7404 . 2 (𝜑 → (𝑌𝐸𝑋) = (𝑌tpos 𝑀𝑋))
17 ovtpos 8220 . 2 (𝑌tpos 𝑀𝑋) = (𝑋𝑀𝑌)
1816, 17eqtr2di 2781 1 (𝜑 → (𝑋𝑀𝑌) = (𝑌𝐸𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  tpos ctpos 8204  Catccat 17625  oppCatcoppc 17672  Monocmon 17690  Epicepi 17691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519  df-ov 7390  df-tpos 8205  df-epi 17693
This theorem is referenced by:  oppcepi  17701  isepi  17702  epii  17705  sectepi  17746  episect  17747  fthepi  17892
  Copyright terms: Public domain W3C validator