![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppcmon | Structured version Visualization version GIF version |
Description: A monomorphism in the opposite category is an epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
oppcmon.o | β’ π = (oppCatβπΆ) |
oppcmon.c | β’ (π β πΆ β Cat) |
oppcmon.m | β’ π = (Monoβπ) |
oppcmon.e | β’ πΈ = (EpiβπΆ) |
Ref | Expression |
---|---|
oppcmon | β’ (π β (πππ) = (ππΈπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppcmon.e | . . . 4 β’ πΈ = (EpiβπΆ) | |
2 | oppcmon.c | . . . . 5 β’ (π β πΆ β Cat) | |
3 | fveq2 6891 | . . . . . . . . . 10 β’ (π = πΆ β (oppCatβπ) = (oppCatβπΆ)) | |
4 | oppcmon.o | . . . . . . . . . 10 β’ π = (oppCatβπΆ) | |
5 | 3, 4 | eqtr4di 2790 | . . . . . . . . 9 β’ (π = πΆ β (oppCatβπ) = π) |
6 | 5 | fveq2d 6895 | . . . . . . . 8 β’ (π = πΆ β (Monoβ(oppCatβπ)) = (Monoβπ)) |
7 | oppcmon.m | . . . . . . . 8 β’ π = (Monoβπ) | |
8 | 6, 7 | eqtr4di 2790 | . . . . . . 7 β’ (π = πΆ β (Monoβ(oppCatβπ)) = π) |
9 | 8 | tposeqd 8213 | . . . . . 6 β’ (π = πΆ β tpos (Monoβ(oppCatβπ)) = tpos π) |
10 | df-epi 17677 | . . . . . 6 β’ Epi = (π β Cat β¦ tpos (Monoβ(oppCatβπ))) | |
11 | 7 | fvexi 6905 | . . . . . . 7 β’ π β V |
12 | 11 | tposex 8244 | . . . . . 6 β’ tpos π β V |
13 | 9, 10, 12 | fvmpt 6998 | . . . . 5 β’ (πΆ β Cat β (EpiβπΆ) = tpos π) |
14 | 2, 13 | syl 17 | . . . 4 β’ (π β (EpiβπΆ) = tpos π) |
15 | 1, 14 | eqtrid 2784 | . . 3 β’ (π β πΈ = tpos π) |
16 | 15 | oveqd 7425 | . 2 β’ (π β (ππΈπ) = (πtpos ππ)) |
17 | ovtpos 8225 | . 2 β’ (πtpos ππ) = (πππ) | |
18 | 16, 17 | eqtr2di 2789 | 1 β’ (π β (πππ) = (ππΈπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 βcfv 6543 (class class class)co 7408 tpos ctpos 8209 Catccat 17607 oppCatcoppc 17654 Monocmon 17674 Epicepi 17675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-fv 6551 df-ov 7411 df-tpos 8210 df-epi 17677 |
This theorem is referenced by: oppcepi 17685 isepi 17686 epii 17689 sectepi 17730 episect 17731 fthepi 17878 |
Copyright terms: Public domain | W3C validator |