| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oppcmon | Structured version Visualization version GIF version | ||
| Description: A monomorphism in the opposite category is an epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| oppcmon.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| oppcmon.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| oppcmon.m | ⊢ 𝑀 = (Mono‘𝑂) |
| oppcmon.e | ⊢ 𝐸 = (Epi‘𝐶) |
| Ref | Expression |
|---|---|
| oppcmon | ⊢ (𝜑 → (𝑋𝑀𝑌) = (𝑌𝐸𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcmon.e | . . . 4 ⊢ 𝐸 = (Epi‘𝐶) | |
| 2 | oppcmon.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 3 | fveq2 6876 | . . . . . . . . . 10 ⊢ (𝑐 = 𝐶 → (oppCat‘𝑐) = (oppCat‘𝐶)) | |
| 4 | oppcmon.o | . . . . . . . . . 10 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 5 | 3, 4 | eqtr4di 2788 | . . . . . . . . 9 ⊢ (𝑐 = 𝐶 → (oppCat‘𝑐) = 𝑂) |
| 6 | 5 | fveq2d 6880 | . . . . . . . 8 ⊢ (𝑐 = 𝐶 → (Mono‘(oppCat‘𝑐)) = (Mono‘𝑂)) |
| 7 | oppcmon.m | . . . . . . . 8 ⊢ 𝑀 = (Mono‘𝑂) | |
| 8 | 6, 7 | eqtr4di 2788 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (Mono‘(oppCat‘𝑐)) = 𝑀) |
| 9 | 8 | tposeqd 8228 | . . . . . 6 ⊢ (𝑐 = 𝐶 → tpos (Mono‘(oppCat‘𝑐)) = tpos 𝑀) |
| 10 | df-epi 17744 | . . . . . 6 ⊢ Epi = (𝑐 ∈ Cat ↦ tpos (Mono‘(oppCat‘𝑐))) | |
| 11 | 7 | fvexi 6890 | . . . . . . 7 ⊢ 𝑀 ∈ V |
| 12 | 11 | tposex 8259 | . . . . . 6 ⊢ tpos 𝑀 ∈ V |
| 13 | 9, 10, 12 | fvmpt 6986 | . . . . 5 ⊢ (𝐶 ∈ Cat → (Epi‘𝐶) = tpos 𝑀) |
| 14 | 2, 13 | syl 17 | . . . 4 ⊢ (𝜑 → (Epi‘𝐶) = tpos 𝑀) |
| 15 | 1, 14 | eqtrid 2782 | . . 3 ⊢ (𝜑 → 𝐸 = tpos 𝑀) |
| 16 | 15 | oveqd 7422 | . 2 ⊢ (𝜑 → (𝑌𝐸𝑋) = (𝑌tpos 𝑀𝑋)) |
| 17 | ovtpos 8240 | . 2 ⊢ (𝑌tpos 𝑀𝑋) = (𝑋𝑀𝑌) | |
| 18 | 16, 17 | eqtr2di 2787 | 1 ⊢ (𝜑 → (𝑋𝑀𝑌) = (𝑌𝐸𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 tpos ctpos 8224 Catccat 17676 oppCatcoppc 17723 Monocmon 17741 Epicepi 17742 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-fv 6539 df-ov 7408 df-tpos 8225 df-epi 17744 |
| This theorem is referenced by: oppcepi 17752 isepi 17753 epii 17756 sectepi 17797 episect 17798 fthepi 17943 |
| Copyright terms: Public domain | W3C validator |