MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppcmon Structured version   Visualization version   GIF version

Theorem oppcmon 17450
Description: A monomorphism in the opposite category is an epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
oppcmon.o 𝑂 = (oppCat‘𝐶)
oppcmon.c (𝜑𝐶 ∈ Cat)
oppcmon.m 𝑀 = (Mono‘𝑂)
oppcmon.e 𝐸 = (Epi‘𝐶)
Assertion
Ref Expression
oppcmon (𝜑 → (𝑋𝑀𝑌) = (𝑌𝐸𝑋))

Proof of Theorem oppcmon
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 oppcmon.e . . . 4 𝐸 = (Epi‘𝐶)
2 oppcmon.c . . . . 5 (𝜑𝐶 ∈ Cat)
3 fveq2 6774 . . . . . . . . . 10 (𝑐 = 𝐶 → (oppCat‘𝑐) = (oppCat‘𝐶))
4 oppcmon.o . . . . . . . . . 10 𝑂 = (oppCat‘𝐶)
53, 4eqtr4di 2796 . . . . . . . . 9 (𝑐 = 𝐶 → (oppCat‘𝑐) = 𝑂)
65fveq2d 6778 . . . . . . . 8 (𝑐 = 𝐶 → (Mono‘(oppCat‘𝑐)) = (Mono‘𝑂))
7 oppcmon.m . . . . . . . 8 𝑀 = (Mono‘𝑂)
86, 7eqtr4di 2796 . . . . . . 7 (𝑐 = 𝐶 → (Mono‘(oppCat‘𝑐)) = 𝑀)
98tposeqd 8045 . . . . . 6 (𝑐 = 𝐶 → tpos (Mono‘(oppCat‘𝑐)) = tpos 𝑀)
10 df-epi 17443 . . . . . 6 Epi = (𝑐 ∈ Cat ↦ tpos (Mono‘(oppCat‘𝑐)))
117fvexi 6788 . . . . . . 7 𝑀 ∈ V
1211tposex 8076 . . . . . 6 tpos 𝑀 ∈ V
139, 10, 12fvmpt 6875 . . . . 5 (𝐶 ∈ Cat → (Epi‘𝐶) = tpos 𝑀)
142, 13syl 17 . . . 4 (𝜑 → (Epi‘𝐶) = tpos 𝑀)
151, 14eqtrid 2790 . . 3 (𝜑𝐸 = tpos 𝑀)
1615oveqd 7292 . 2 (𝜑 → (𝑌𝐸𝑋) = (𝑌tpos 𝑀𝑋))
17 ovtpos 8057 . 2 (𝑌tpos 𝑀𝑋) = (𝑋𝑀𝑌)
1816, 17eqtr2di 2795 1 (𝜑 → (𝑋𝑀𝑌) = (𝑌𝐸𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  tpos ctpos 8041  Catccat 17373  oppCatcoppc 17420  Monocmon 17440  Epicepi 17441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441  df-ov 7278  df-tpos 8042  df-epi 17443
This theorem is referenced by:  oppcepi  17451  isepi  17452  epii  17455  sectepi  17496  episect  17497  fthepi  17644
  Copyright terms: Public domain W3C validator