Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oppcmon | Structured version Visualization version GIF version |
Description: A monomorphism in the opposite category is an epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
oppcmon.o | ⊢ 𝑂 = (oppCat‘𝐶) |
oppcmon.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
oppcmon.m | ⊢ 𝑀 = (Mono‘𝑂) |
oppcmon.e | ⊢ 𝐸 = (Epi‘𝐶) |
Ref | Expression |
---|---|
oppcmon | ⊢ (𝜑 → (𝑋𝑀𝑌) = (𝑌𝐸𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppcmon.e | . . . 4 ⊢ 𝐸 = (Epi‘𝐶) | |
2 | oppcmon.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
3 | fveq2 6774 | . . . . . . . . . 10 ⊢ (𝑐 = 𝐶 → (oppCat‘𝑐) = (oppCat‘𝐶)) | |
4 | oppcmon.o | . . . . . . . . . 10 ⊢ 𝑂 = (oppCat‘𝐶) | |
5 | 3, 4 | eqtr4di 2796 | . . . . . . . . 9 ⊢ (𝑐 = 𝐶 → (oppCat‘𝑐) = 𝑂) |
6 | 5 | fveq2d 6778 | . . . . . . . 8 ⊢ (𝑐 = 𝐶 → (Mono‘(oppCat‘𝑐)) = (Mono‘𝑂)) |
7 | oppcmon.m | . . . . . . . 8 ⊢ 𝑀 = (Mono‘𝑂) | |
8 | 6, 7 | eqtr4di 2796 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (Mono‘(oppCat‘𝑐)) = 𝑀) |
9 | 8 | tposeqd 8045 | . . . . . 6 ⊢ (𝑐 = 𝐶 → tpos (Mono‘(oppCat‘𝑐)) = tpos 𝑀) |
10 | df-epi 17443 | . . . . . 6 ⊢ Epi = (𝑐 ∈ Cat ↦ tpos (Mono‘(oppCat‘𝑐))) | |
11 | 7 | fvexi 6788 | . . . . . . 7 ⊢ 𝑀 ∈ V |
12 | 11 | tposex 8076 | . . . . . 6 ⊢ tpos 𝑀 ∈ V |
13 | 9, 10, 12 | fvmpt 6875 | . . . . 5 ⊢ (𝐶 ∈ Cat → (Epi‘𝐶) = tpos 𝑀) |
14 | 2, 13 | syl 17 | . . . 4 ⊢ (𝜑 → (Epi‘𝐶) = tpos 𝑀) |
15 | 1, 14 | eqtrid 2790 | . . 3 ⊢ (𝜑 → 𝐸 = tpos 𝑀) |
16 | 15 | oveqd 7292 | . 2 ⊢ (𝜑 → (𝑌𝐸𝑋) = (𝑌tpos 𝑀𝑋)) |
17 | ovtpos 8057 | . 2 ⊢ (𝑌tpos 𝑀𝑋) = (𝑋𝑀𝑌) | |
18 | 16, 17 | eqtr2di 2795 | 1 ⊢ (𝜑 → (𝑋𝑀𝑌) = (𝑌𝐸𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 tpos ctpos 8041 Catccat 17373 oppCatcoppc 17420 Monocmon 17440 Epicepi 17441 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 df-ov 7278 df-tpos 8042 df-epi 17443 |
This theorem is referenced by: oppcepi 17451 isepi 17452 epii 17455 sectepi 17496 episect 17497 fthepi 17644 |
Copyright terms: Public domain | W3C validator |