| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oppcmon | Structured version Visualization version GIF version | ||
| Description: A monomorphism in the opposite category is an epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| oppcmon.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| oppcmon.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| oppcmon.m | ⊢ 𝑀 = (Mono‘𝑂) |
| oppcmon.e | ⊢ 𝐸 = (Epi‘𝐶) |
| Ref | Expression |
|---|---|
| oppcmon | ⊢ (𝜑 → (𝑋𝑀𝑌) = (𝑌𝐸𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcmon.e | . . . 4 ⊢ 𝐸 = (Epi‘𝐶) | |
| 2 | oppcmon.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 3 | fveq2 6828 | . . . . . . . . . 10 ⊢ (𝑐 = 𝐶 → (oppCat‘𝑐) = (oppCat‘𝐶)) | |
| 4 | oppcmon.o | . . . . . . . . . 10 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 5 | 3, 4 | eqtr4di 2786 | . . . . . . . . 9 ⊢ (𝑐 = 𝐶 → (oppCat‘𝑐) = 𝑂) |
| 6 | 5 | fveq2d 6832 | . . . . . . . 8 ⊢ (𝑐 = 𝐶 → (Mono‘(oppCat‘𝑐)) = (Mono‘𝑂)) |
| 7 | oppcmon.m | . . . . . . . 8 ⊢ 𝑀 = (Mono‘𝑂) | |
| 8 | 6, 7 | eqtr4di 2786 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (Mono‘(oppCat‘𝑐)) = 𝑀) |
| 9 | 8 | tposeqd 8165 | . . . . . 6 ⊢ (𝑐 = 𝐶 → tpos (Mono‘(oppCat‘𝑐)) = tpos 𝑀) |
| 10 | df-epi 17640 | . . . . . 6 ⊢ Epi = (𝑐 ∈ Cat ↦ tpos (Mono‘(oppCat‘𝑐))) | |
| 11 | 7 | fvexi 6842 | . . . . . . 7 ⊢ 𝑀 ∈ V |
| 12 | 11 | tposex 8196 | . . . . . 6 ⊢ tpos 𝑀 ∈ V |
| 13 | 9, 10, 12 | fvmpt 6935 | . . . . 5 ⊢ (𝐶 ∈ Cat → (Epi‘𝐶) = tpos 𝑀) |
| 14 | 2, 13 | syl 17 | . . . 4 ⊢ (𝜑 → (Epi‘𝐶) = tpos 𝑀) |
| 15 | 1, 14 | eqtrid 2780 | . . 3 ⊢ (𝜑 → 𝐸 = tpos 𝑀) |
| 16 | 15 | oveqd 7369 | . 2 ⊢ (𝜑 → (𝑌𝐸𝑋) = (𝑌tpos 𝑀𝑋)) |
| 17 | ovtpos 8177 | . 2 ⊢ (𝑌tpos 𝑀𝑋) = (𝑋𝑀𝑌) | |
| 18 | 16, 17 | eqtr2di 2785 | 1 ⊢ (𝜑 → (𝑋𝑀𝑌) = (𝑌𝐸𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ‘cfv 6486 (class class class)co 7352 tpos ctpos 8161 Catccat 17572 oppCatcoppc 17619 Monocmon 17637 Epicepi 17638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-fv 6494 df-ov 7355 df-tpos 8162 df-epi 17640 |
| This theorem is referenced by: oppcepi 17648 isepi 17649 epii 17652 sectepi 17693 episect 17694 fthepi 17839 |
| Copyright terms: Public domain | W3C validator |