MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppcmon Structured version   Visualization version   GIF version

Theorem oppcmon 17642
Description: A monomorphism in the opposite category is an epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
oppcmon.o 𝑂 = (oppCat‘𝐶)
oppcmon.c (𝜑𝐶 ∈ Cat)
oppcmon.m 𝑀 = (Mono‘𝑂)
oppcmon.e 𝐸 = (Epi‘𝐶)
Assertion
Ref Expression
oppcmon (𝜑 → (𝑋𝑀𝑌) = (𝑌𝐸𝑋))

Proof of Theorem oppcmon
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 oppcmon.e . . . 4 𝐸 = (Epi‘𝐶)
2 oppcmon.c . . . . 5 (𝜑𝐶 ∈ Cat)
3 fveq2 6822 . . . . . . . . . 10 (𝑐 = 𝐶 → (oppCat‘𝑐) = (oppCat‘𝐶))
4 oppcmon.o . . . . . . . . . 10 𝑂 = (oppCat‘𝐶)
53, 4eqtr4di 2784 . . . . . . . . 9 (𝑐 = 𝐶 → (oppCat‘𝑐) = 𝑂)
65fveq2d 6826 . . . . . . . 8 (𝑐 = 𝐶 → (Mono‘(oppCat‘𝑐)) = (Mono‘𝑂))
7 oppcmon.m . . . . . . . 8 𝑀 = (Mono‘𝑂)
86, 7eqtr4di 2784 . . . . . . 7 (𝑐 = 𝐶 → (Mono‘(oppCat‘𝑐)) = 𝑀)
98tposeqd 8159 . . . . . 6 (𝑐 = 𝐶 → tpos (Mono‘(oppCat‘𝑐)) = tpos 𝑀)
10 df-epi 17635 . . . . . 6 Epi = (𝑐 ∈ Cat ↦ tpos (Mono‘(oppCat‘𝑐)))
117fvexi 6836 . . . . . . 7 𝑀 ∈ V
1211tposex 8190 . . . . . 6 tpos 𝑀 ∈ V
139, 10, 12fvmpt 6929 . . . . 5 (𝐶 ∈ Cat → (Epi‘𝐶) = tpos 𝑀)
142, 13syl 17 . . . 4 (𝜑 → (Epi‘𝐶) = tpos 𝑀)
151, 14eqtrid 2778 . . 3 (𝜑𝐸 = tpos 𝑀)
1615oveqd 7363 . 2 (𝜑 → (𝑌𝐸𝑋) = (𝑌tpos 𝑀𝑋))
17 ovtpos 8171 . 2 (𝑌tpos 𝑀𝑋) = (𝑋𝑀𝑌)
1816, 17eqtr2di 2783 1 (𝜑 → (𝑋𝑀𝑌) = (𝑌𝐸𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  tpos ctpos 8155  Catccat 17567  oppCatcoppc 17614  Monocmon 17632  Epicepi 17633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489  df-ov 7349  df-tpos 8156  df-epi 17635
This theorem is referenced by:  oppcepi  17643  isepi  17644  epii  17647  sectepi  17688  episect  17689  fthepi  17834
  Copyright terms: Public domain W3C validator