MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppcmon Structured version   Visualization version   GIF version

Theorem oppcmon 17684
Description: A monomorphism in the opposite category is an epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
oppcmon.o 𝑂 = (oppCatβ€˜πΆ)
oppcmon.c (πœ‘ β†’ 𝐢 ∈ Cat)
oppcmon.m 𝑀 = (Monoβ€˜π‘‚)
oppcmon.e 𝐸 = (Epiβ€˜πΆ)
Assertion
Ref Expression
oppcmon (πœ‘ β†’ (π‘‹π‘€π‘Œ) = (π‘ŒπΈπ‘‹))

Proof of Theorem oppcmon
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 oppcmon.e . . . 4 𝐸 = (Epiβ€˜πΆ)
2 oppcmon.c . . . . 5 (πœ‘ β†’ 𝐢 ∈ Cat)
3 fveq2 6891 . . . . . . . . . 10 (𝑐 = 𝐢 β†’ (oppCatβ€˜π‘) = (oppCatβ€˜πΆ))
4 oppcmon.o . . . . . . . . . 10 𝑂 = (oppCatβ€˜πΆ)
53, 4eqtr4di 2790 . . . . . . . . 9 (𝑐 = 𝐢 β†’ (oppCatβ€˜π‘) = 𝑂)
65fveq2d 6895 . . . . . . . 8 (𝑐 = 𝐢 β†’ (Monoβ€˜(oppCatβ€˜π‘)) = (Monoβ€˜π‘‚))
7 oppcmon.m . . . . . . . 8 𝑀 = (Monoβ€˜π‘‚)
86, 7eqtr4di 2790 . . . . . . 7 (𝑐 = 𝐢 β†’ (Monoβ€˜(oppCatβ€˜π‘)) = 𝑀)
98tposeqd 8213 . . . . . 6 (𝑐 = 𝐢 β†’ tpos (Monoβ€˜(oppCatβ€˜π‘)) = tpos 𝑀)
10 df-epi 17677 . . . . . 6 Epi = (𝑐 ∈ Cat ↦ tpos (Monoβ€˜(oppCatβ€˜π‘)))
117fvexi 6905 . . . . . . 7 𝑀 ∈ V
1211tposex 8244 . . . . . 6 tpos 𝑀 ∈ V
139, 10, 12fvmpt 6998 . . . . 5 (𝐢 ∈ Cat β†’ (Epiβ€˜πΆ) = tpos 𝑀)
142, 13syl 17 . . . 4 (πœ‘ β†’ (Epiβ€˜πΆ) = tpos 𝑀)
151, 14eqtrid 2784 . . 3 (πœ‘ β†’ 𝐸 = tpos 𝑀)
1615oveqd 7425 . 2 (πœ‘ β†’ (π‘ŒπΈπ‘‹) = (π‘Œtpos 𝑀𝑋))
17 ovtpos 8225 . 2 (π‘Œtpos 𝑀𝑋) = (π‘‹π‘€π‘Œ)
1816, 17eqtr2di 2789 1 (πœ‘ β†’ (π‘‹π‘€π‘Œ) = (π‘ŒπΈπ‘‹))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  β€˜cfv 6543  (class class class)co 7408  tpos ctpos 8209  Catccat 17607  oppCatcoppc 17654  Monocmon 17674  Epicepi 17675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-fv 6551  df-ov 7411  df-tpos 8210  df-epi 17677
This theorem is referenced by:  oppcepi  17685  isepi  17686  epii  17689  sectepi  17730  episect  17731  fthepi  17878
  Copyright terms: Public domain W3C validator