| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oppcmon | Structured version Visualization version GIF version | ||
| Description: A monomorphism in the opposite category is an epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| oppcmon.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| oppcmon.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| oppcmon.m | ⊢ 𝑀 = (Mono‘𝑂) |
| oppcmon.e | ⊢ 𝐸 = (Epi‘𝐶) |
| Ref | Expression |
|---|---|
| oppcmon | ⊢ (𝜑 → (𝑋𝑀𝑌) = (𝑌𝐸𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcmon.e | . . . 4 ⊢ 𝐸 = (Epi‘𝐶) | |
| 2 | oppcmon.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 3 | fveq2 6826 | . . . . . . . . . 10 ⊢ (𝑐 = 𝐶 → (oppCat‘𝑐) = (oppCat‘𝐶)) | |
| 4 | oppcmon.o | . . . . . . . . . 10 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 5 | 3, 4 | eqtr4di 2782 | . . . . . . . . 9 ⊢ (𝑐 = 𝐶 → (oppCat‘𝑐) = 𝑂) |
| 6 | 5 | fveq2d 6830 | . . . . . . . 8 ⊢ (𝑐 = 𝐶 → (Mono‘(oppCat‘𝑐)) = (Mono‘𝑂)) |
| 7 | oppcmon.m | . . . . . . . 8 ⊢ 𝑀 = (Mono‘𝑂) | |
| 8 | 6, 7 | eqtr4di 2782 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (Mono‘(oppCat‘𝑐)) = 𝑀) |
| 9 | 8 | tposeqd 8169 | . . . . . 6 ⊢ (𝑐 = 𝐶 → tpos (Mono‘(oppCat‘𝑐)) = tpos 𝑀) |
| 10 | df-epi 17656 | . . . . . 6 ⊢ Epi = (𝑐 ∈ Cat ↦ tpos (Mono‘(oppCat‘𝑐))) | |
| 11 | 7 | fvexi 6840 | . . . . . . 7 ⊢ 𝑀 ∈ V |
| 12 | 11 | tposex 8200 | . . . . . 6 ⊢ tpos 𝑀 ∈ V |
| 13 | 9, 10, 12 | fvmpt 6934 | . . . . 5 ⊢ (𝐶 ∈ Cat → (Epi‘𝐶) = tpos 𝑀) |
| 14 | 2, 13 | syl 17 | . . . 4 ⊢ (𝜑 → (Epi‘𝐶) = tpos 𝑀) |
| 15 | 1, 14 | eqtrid 2776 | . . 3 ⊢ (𝜑 → 𝐸 = tpos 𝑀) |
| 16 | 15 | oveqd 7370 | . 2 ⊢ (𝜑 → (𝑌𝐸𝑋) = (𝑌tpos 𝑀𝑋)) |
| 17 | ovtpos 8181 | . 2 ⊢ (𝑌tpos 𝑀𝑋) = (𝑋𝑀𝑌) | |
| 18 | 16, 17 | eqtr2di 2781 | 1 ⊢ (𝜑 → (𝑋𝑀𝑌) = (𝑌𝐸𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 tpos ctpos 8165 Catccat 17588 oppCatcoppc 17635 Monocmon 17653 Epicepi 17654 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-fv 6494 df-ov 7356 df-tpos 8166 df-epi 17656 |
| This theorem is referenced by: oppcepi 17664 isepi 17665 epii 17668 sectepi 17709 episect 17710 fthepi 17855 |
| Copyright terms: Public domain | W3C validator |