![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppcmon | Structured version Visualization version GIF version |
Description: A monomorphism in the opposite category is an epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
oppcmon.o | ⊢ 𝑂 = (oppCat‘𝐶) |
oppcmon.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
oppcmon.m | ⊢ 𝑀 = (Mono‘𝑂) |
oppcmon.e | ⊢ 𝐸 = (Epi‘𝐶) |
Ref | Expression |
---|---|
oppcmon | ⊢ (𝜑 → (𝑋𝑀𝑌) = (𝑌𝐸𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppcmon.e | . . . 4 ⊢ 𝐸 = (Epi‘𝐶) | |
2 | oppcmon.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
3 | fveq2 6920 | . . . . . . . . . 10 ⊢ (𝑐 = 𝐶 → (oppCat‘𝑐) = (oppCat‘𝐶)) | |
4 | oppcmon.o | . . . . . . . . . 10 ⊢ 𝑂 = (oppCat‘𝐶) | |
5 | 3, 4 | eqtr4di 2798 | . . . . . . . . 9 ⊢ (𝑐 = 𝐶 → (oppCat‘𝑐) = 𝑂) |
6 | 5 | fveq2d 6924 | . . . . . . . 8 ⊢ (𝑐 = 𝐶 → (Mono‘(oppCat‘𝑐)) = (Mono‘𝑂)) |
7 | oppcmon.m | . . . . . . . 8 ⊢ 𝑀 = (Mono‘𝑂) | |
8 | 6, 7 | eqtr4di 2798 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (Mono‘(oppCat‘𝑐)) = 𝑀) |
9 | 8 | tposeqd 8270 | . . . . . 6 ⊢ (𝑐 = 𝐶 → tpos (Mono‘(oppCat‘𝑐)) = tpos 𝑀) |
10 | df-epi 17792 | . . . . . 6 ⊢ Epi = (𝑐 ∈ Cat ↦ tpos (Mono‘(oppCat‘𝑐))) | |
11 | 7 | fvexi 6934 | . . . . . . 7 ⊢ 𝑀 ∈ V |
12 | 11 | tposex 8301 | . . . . . 6 ⊢ tpos 𝑀 ∈ V |
13 | 9, 10, 12 | fvmpt 7029 | . . . . 5 ⊢ (𝐶 ∈ Cat → (Epi‘𝐶) = tpos 𝑀) |
14 | 2, 13 | syl 17 | . . . 4 ⊢ (𝜑 → (Epi‘𝐶) = tpos 𝑀) |
15 | 1, 14 | eqtrid 2792 | . . 3 ⊢ (𝜑 → 𝐸 = tpos 𝑀) |
16 | 15 | oveqd 7465 | . 2 ⊢ (𝜑 → (𝑌𝐸𝑋) = (𝑌tpos 𝑀𝑋)) |
17 | ovtpos 8282 | . 2 ⊢ (𝑌tpos 𝑀𝑋) = (𝑋𝑀𝑌) | |
18 | 16, 17 | eqtr2di 2797 | 1 ⊢ (𝜑 → (𝑋𝑀𝑌) = (𝑌𝐸𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 tpos ctpos 8266 Catccat 17722 oppCatcoppc 17769 Monocmon 17789 Epicepi 17790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 df-ov 7451 df-tpos 8267 df-epi 17792 |
This theorem is referenced by: oppcepi 17800 isepi 17801 epii 17804 sectepi 17845 episect 17846 fthepi 17995 |
Copyright terms: Public domain | W3C validator |