![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opprmulfval | Structured version Visualization version GIF version |
Description: Value of the multiplication operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
opprval.1 | β’ π΅ = (Baseβπ ) |
opprval.2 | β’ Β· = (.rβπ ) |
opprval.3 | β’ π = (opprβπ ) |
opprmulfval.4 | β’ β = (.rβπ) |
Ref | Expression |
---|---|
opprmulfval | β’ β = tpos Β· |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprmulfval.4 | . 2 β’ β = (.rβπ) | |
2 | opprval.1 | . . . . . 6 β’ π΅ = (Baseβπ ) | |
3 | opprval.2 | . . . . . 6 β’ Β· = (.rβπ ) | |
4 | opprval.3 | . . . . . 6 β’ π = (opprβπ ) | |
5 | 2, 3, 4 | opprval 20150 | . . . . 5 β’ π = (π sSet β¨(.rβndx), tpos Β· β©) |
6 | 5 | fveq2i 6894 | . . . 4 β’ (.rβπ) = (.rβ(π sSet β¨(.rβndx), tpos Β· β©)) |
7 | 3 | fvexi 6905 | . . . . . 6 β’ Β· β V |
8 | 7 | tposex 8244 | . . . . 5 β’ tpos Β· β V |
9 | mulridx 17238 | . . . . . 6 β’ .r = Slot (.rβndx) | |
10 | 9 | setsid 17140 | . . . . 5 β’ ((π β V β§ tpos Β· β V) β tpos Β· = (.rβ(π sSet β¨(.rβndx), tpos Β· β©))) |
11 | 8, 10 | mpan2 689 | . . . 4 β’ (π β V β tpos Β· = (.rβ(π sSet β¨(.rβndx), tpos Β· β©))) |
12 | 6, 11 | eqtr4id 2791 | . . 3 β’ (π β V β (.rβπ) = tpos Β· ) |
13 | tpos0 8240 | . . . . 5 β’ tpos β = β | |
14 | 9 | str0 17121 | . . . . 5 β’ β = (.rββ ) |
15 | 13, 14 | eqtr2i 2761 | . . . 4 β’ (.rββ ) = tpos β |
16 | fvprc 6883 | . . . . . 6 β’ (Β¬ π β V β (opprβπ ) = β ) | |
17 | 4, 16 | eqtrid 2784 | . . . . 5 β’ (Β¬ π β V β π = β ) |
18 | 17 | fveq2d 6895 | . . . 4 β’ (Β¬ π β V β (.rβπ) = (.rββ )) |
19 | fvprc 6883 | . . . . . 6 β’ (Β¬ π β V β (.rβπ ) = β ) | |
20 | 3, 19 | eqtrid 2784 | . . . . 5 β’ (Β¬ π β V β Β· = β ) |
21 | 20 | tposeqd 8213 | . . . 4 β’ (Β¬ π β V β tpos Β· = tpos β ) |
22 | 15, 18, 21 | 3eqtr4a 2798 | . . 3 β’ (Β¬ π β V β (.rβπ) = tpos Β· ) |
23 | 12, 22 | pm2.61i 182 | . 2 β’ (.rβπ) = tpos Β· |
24 | 1, 23 | eqtri 2760 | 1 β’ β = tpos Β· |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 = wceq 1541 β wcel 2106 Vcvv 3474 β c0 4322 β¨cop 4634 βcfv 6543 (class class class)co 7408 tpos ctpos 8209 sSet csts 17095 ndxcnx 17125 Basecbs 17143 .rcmulr 17197 opprcoppr 20148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-1cn 11167 ax-addcl 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-tpos 8210 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-nn 12212 df-2 12274 df-3 12275 df-sets 17096 df-slot 17114 df-ndx 17126 df-mulr 17210 df-oppr 20149 |
This theorem is referenced by: opprmul 20152 opprabs 32591 |
Copyright terms: Public domain | W3C validator |