| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opprmulfval | Structured version Visualization version GIF version | ||
| Description: Value of the multiplication operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| Ref | Expression |
|---|---|
| opprval.1 | ⊢ 𝐵 = (Base‘𝑅) |
| opprval.2 | ⊢ · = (.r‘𝑅) |
| opprval.3 | ⊢ 𝑂 = (oppr‘𝑅) |
| opprmulfval.4 | ⊢ ∙ = (.r‘𝑂) |
| Ref | Expression |
|---|---|
| opprmulfval | ⊢ ∙ = tpos · |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprmulfval.4 | . 2 ⊢ ∙ = (.r‘𝑂) | |
| 2 | opprval.1 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | opprval.2 | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 4 | opprval.3 | . . . . . 6 ⊢ 𝑂 = (oppr‘𝑅) | |
| 5 | 2, 3, 4 | opprval 20223 | . . . . 5 ⊢ 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos · 〉) |
| 6 | 5 | fveq2i 6843 | . . . 4 ⊢ (.r‘𝑂) = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉)) |
| 7 | 3 | fvexi 6854 | . . . . . 6 ⊢ · ∈ V |
| 8 | 7 | tposex 8216 | . . . . 5 ⊢ tpos · ∈ V |
| 9 | mulridx 17234 | . . . . . 6 ⊢ .r = Slot (.r‘ndx) | |
| 10 | 9 | setsid 17153 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ tpos · ∈ V) → tpos · = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉))) |
| 11 | 8, 10 | mpan2 691 | . . . 4 ⊢ (𝑅 ∈ V → tpos · = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉))) |
| 12 | 6, 11 | eqtr4id 2783 | . . 3 ⊢ (𝑅 ∈ V → (.r‘𝑂) = tpos · ) |
| 13 | tpos0 8212 | . . . . 5 ⊢ tpos ∅ = ∅ | |
| 14 | 9 | str0 17135 | . . . . 5 ⊢ ∅ = (.r‘∅) |
| 15 | 13, 14 | eqtr2i 2753 | . . . 4 ⊢ (.r‘∅) = tpos ∅ |
| 16 | fvprc 6832 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (oppr‘𝑅) = ∅) | |
| 17 | 4, 16 | eqtrid 2776 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝑂 = ∅) |
| 18 | 17 | fveq2d 6844 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (.r‘𝑂) = (.r‘∅)) |
| 19 | fvprc 6832 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (.r‘𝑅) = ∅) | |
| 20 | 3, 19 | eqtrid 2776 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → · = ∅) |
| 21 | 20 | tposeqd 8185 | . . . 4 ⊢ (¬ 𝑅 ∈ V → tpos · = tpos ∅) |
| 22 | 15, 18, 21 | 3eqtr4a 2790 | . . 3 ⊢ (¬ 𝑅 ∈ V → (.r‘𝑂) = tpos · ) |
| 23 | 12, 22 | pm2.61i 182 | . 2 ⊢ (.r‘𝑂) = tpos · |
| 24 | 1, 23 | eqtri 2752 | 1 ⊢ ∙ = tpos · |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∅c0 4292 〈cop 4591 ‘cfv 6499 (class class class)co 7369 tpos ctpos 8181 sSet csts 17109 ndxcnx 17139 Basecbs 17155 .rcmulr 17197 opprcoppr 20221 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-1cn 11102 ax-addcl 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-nn 12163 df-2 12225 df-3 12226 df-sets 17110 df-slot 17128 df-ndx 17140 df-mulr 17210 df-oppr 20222 |
| This theorem is referenced by: opprmul 20225 opprabs 33426 |
| Copyright terms: Public domain | W3C validator |