![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opprmulfval | Structured version Visualization version GIF version |
Description: Value of the multiplication operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
opprval.1 | ⊢ 𝐵 = (Base‘𝑅) |
opprval.2 | ⊢ · = (.r‘𝑅) |
opprval.3 | ⊢ 𝑂 = (oppr‘𝑅) |
opprmulfval.4 | ⊢ ∙ = (.r‘𝑂) |
Ref | Expression |
---|---|
opprmulfval | ⊢ ∙ = tpos · |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprmulfval.4 | . 2 ⊢ ∙ = (.r‘𝑂) | |
2 | opprval.1 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
3 | opprval.2 | . . . . . 6 ⊢ · = (.r‘𝑅) | |
4 | opprval.3 | . . . . . 6 ⊢ 𝑂 = (oppr‘𝑅) | |
5 | 2, 3, 4 | opprval 20361 | . . . . 5 ⊢ 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos · 〉) |
6 | 5 | fveq2i 6923 | . . . 4 ⊢ (.r‘𝑂) = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉)) |
7 | 3 | fvexi 6934 | . . . . . 6 ⊢ · ∈ V |
8 | 7 | tposex 8301 | . . . . 5 ⊢ tpos · ∈ V |
9 | mulridx 17353 | . . . . . 6 ⊢ .r = Slot (.r‘ndx) | |
10 | 9 | setsid 17255 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ tpos · ∈ V) → tpos · = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉))) |
11 | 8, 10 | mpan2 690 | . . . 4 ⊢ (𝑅 ∈ V → tpos · = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉))) |
12 | 6, 11 | eqtr4id 2799 | . . 3 ⊢ (𝑅 ∈ V → (.r‘𝑂) = tpos · ) |
13 | tpos0 8297 | . . . . 5 ⊢ tpos ∅ = ∅ | |
14 | 9 | str0 17236 | . . . . 5 ⊢ ∅ = (.r‘∅) |
15 | 13, 14 | eqtr2i 2769 | . . . 4 ⊢ (.r‘∅) = tpos ∅ |
16 | fvprc 6912 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (oppr‘𝑅) = ∅) | |
17 | 4, 16 | eqtrid 2792 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝑂 = ∅) |
18 | 17 | fveq2d 6924 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (.r‘𝑂) = (.r‘∅)) |
19 | fvprc 6912 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (.r‘𝑅) = ∅) | |
20 | 3, 19 | eqtrid 2792 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → · = ∅) |
21 | 20 | tposeqd 8270 | . . . 4 ⊢ (¬ 𝑅 ∈ V → tpos · = tpos ∅) |
22 | 15, 18, 21 | 3eqtr4a 2806 | . . 3 ⊢ (¬ 𝑅 ∈ V → (.r‘𝑂) = tpos · ) |
23 | 12, 22 | pm2.61i 182 | . 2 ⊢ (.r‘𝑂) = tpos · |
24 | 1, 23 | eqtri 2768 | 1 ⊢ ∙ = tpos · |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 〈cop 4654 ‘cfv 6573 (class class class)co 7448 tpos ctpos 8266 sSet csts 17210 ndxcnx 17240 Basecbs 17258 .rcmulr 17312 opprcoppr 20359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-1cn 11242 ax-addcl 11244 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 df-2 12356 df-3 12357 df-sets 17211 df-slot 17229 df-ndx 17241 df-mulr 17325 df-oppr 20360 |
This theorem is referenced by: opprmul 20363 opprabs 33475 |
Copyright terms: Public domain | W3C validator |