| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opprmulfval | Structured version Visualization version GIF version | ||
| Description: Value of the multiplication operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| Ref | Expression |
|---|---|
| opprval.1 | ⊢ 𝐵 = (Base‘𝑅) |
| opprval.2 | ⊢ · = (.r‘𝑅) |
| opprval.3 | ⊢ 𝑂 = (oppr‘𝑅) |
| opprmulfval.4 | ⊢ ∙ = (.r‘𝑂) |
| Ref | Expression |
|---|---|
| opprmulfval | ⊢ ∙ = tpos · |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprmulfval.4 | . 2 ⊢ ∙ = (.r‘𝑂) | |
| 2 | opprval.1 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | opprval.2 | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 4 | opprval.3 | . . . . . 6 ⊢ 𝑂 = (oppr‘𝑅) | |
| 5 | 2, 3, 4 | opprval 20254 | . . . . 5 ⊢ 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos · 〉) |
| 6 | 5 | fveq2i 6864 | . . . 4 ⊢ (.r‘𝑂) = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉)) |
| 7 | 3 | fvexi 6875 | . . . . . 6 ⊢ · ∈ V |
| 8 | 7 | tposex 8242 | . . . . 5 ⊢ tpos · ∈ V |
| 9 | mulridx 17265 | . . . . . 6 ⊢ .r = Slot (.r‘ndx) | |
| 10 | 9 | setsid 17184 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ tpos · ∈ V) → tpos · = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉))) |
| 11 | 8, 10 | mpan2 691 | . . . 4 ⊢ (𝑅 ∈ V → tpos · = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉))) |
| 12 | 6, 11 | eqtr4id 2784 | . . 3 ⊢ (𝑅 ∈ V → (.r‘𝑂) = tpos · ) |
| 13 | tpos0 8238 | . . . . 5 ⊢ tpos ∅ = ∅ | |
| 14 | 9 | str0 17166 | . . . . 5 ⊢ ∅ = (.r‘∅) |
| 15 | 13, 14 | eqtr2i 2754 | . . . 4 ⊢ (.r‘∅) = tpos ∅ |
| 16 | fvprc 6853 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (oppr‘𝑅) = ∅) | |
| 17 | 4, 16 | eqtrid 2777 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝑂 = ∅) |
| 18 | 17 | fveq2d 6865 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (.r‘𝑂) = (.r‘∅)) |
| 19 | fvprc 6853 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (.r‘𝑅) = ∅) | |
| 20 | 3, 19 | eqtrid 2777 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → · = ∅) |
| 21 | 20 | tposeqd 8211 | . . . 4 ⊢ (¬ 𝑅 ∈ V → tpos · = tpos ∅) |
| 22 | 15, 18, 21 | 3eqtr4a 2791 | . . 3 ⊢ (¬ 𝑅 ∈ V → (.r‘𝑂) = tpos · ) |
| 23 | 12, 22 | pm2.61i 182 | . 2 ⊢ (.r‘𝑂) = tpos · |
| 24 | 1, 23 | eqtri 2753 | 1 ⊢ ∙ = tpos · |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 〈cop 4598 ‘cfv 6514 (class class class)co 7390 tpos ctpos 8207 sSet csts 17140 ndxcnx 17170 Basecbs 17186 .rcmulr 17228 opprcoppr 20252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-1cn 11133 ax-addcl 11135 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-nn 12194 df-2 12256 df-3 12257 df-sets 17141 df-slot 17159 df-ndx 17171 df-mulr 17241 df-oppr 20253 |
| This theorem is referenced by: opprmul 20256 opprabs 33460 |
| Copyright terms: Public domain | W3C validator |