| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opprmulfval | Structured version Visualization version GIF version | ||
| Description: Value of the multiplication operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| Ref | Expression |
|---|---|
| opprval.1 | ⊢ 𝐵 = (Base‘𝑅) |
| opprval.2 | ⊢ · = (.r‘𝑅) |
| opprval.3 | ⊢ 𝑂 = (oppr‘𝑅) |
| opprmulfval.4 | ⊢ ∙ = (.r‘𝑂) |
| Ref | Expression |
|---|---|
| opprmulfval | ⊢ ∙ = tpos · |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprmulfval.4 | . 2 ⊢ ∙ = (.r‘𝑂) | |
| 2 | opprval.1 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | opprval.2 | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 4 | opprval.3 | . . . . . 6 ⊢ 𝑂 = (oppr‘𝑅) | |
| 5 | 2, 3, 4 | opprval 20247 | . . . . 5 ⊢ 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos · 〉) |
| 6 | 5 | fveq2i 6861 | . . . 4 ⊢ (.r‘𝑂) = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉)) |
| 7 | 3 | fvexi 6872 | . . . . . 6 ⊢ · ∈ V |
| 8 | 7 | tposex 8239 | . . . . 5 ⊢ tpos · ∈ V |
| 9 | mulridx 17258 | . . . . . 6 ⊢ .r = Slot (.r‘ndx) | |
| 10 | 9 | setsid 17177 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ tpos · ∈ V) → tpos · = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉))) |
| 11 | 8, 10 | mpan2 691 | . . . 4 ⊢ (𝑅 ∈ V → tpos · = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉))) |
| 12 | 6, 11 | eqtr4id 2783 | . . 3 ⊢ (𝑅 ∈ V → (.r‘𝑂) = tpos · ) |
| 13 | tpos0 8235 | . . . . 5 ⊢ tpos ∅ = ∅ | |
| 14 | 9 | str0 17159 | . . . . 5 ⊢ ∅ = (.r‘∅) |
| 15 | 13, 14 | eqtr2i 2753 | . . . 4 ⊢ (.r‘∅) = tpos ∅ |
| 16 | fvprc 6850 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (oppr‘𝑅) = ∅) | |
| 17 | 4, 16 | eqtrid 2776 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝑂 = ∅) |
| 18 | 17 | fveq2d 6862 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (.r‘𝑂) = (.r‘∅)) |
| 19 | fvprc 6850 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (.r‘𝑅) = ∅) | |
| 20 | 3, 19 | eqtrid 2776 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → · = ∅) |
| 21 | 20 | tposeqd 8208 | . . . 4 ⊢ (¬ 𝑅 ∈ V → tpos · = tpos ∅) |
| 22 | 15, 18, 21 | 3eqtr4a 2790 | . . 3 ⊢ (¬ 𝑅 ∈ V → (.r‘𝑂) = tpos · ) |
| 23 | 12, 22 | pm2.61i 182 | . 2 ⊢ (.r‘𝑂) = tpos · |
| 24 | 1, 23 | eqtri 2752 | 1 ⊢ ∙ = tpos · |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 〈cop 4595 ‘cfv 6511 (class class class)co 7387 tpos ctpos 8204 sSet csts 17133 ndxcnx 17163 Basecbs 17179 .rcmulr 17221 opprcoppr 20245 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-1cn 11126 ax-addcl 11128 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 df-2 12249 df-3 12250 df-sets 17134 df-slot 17152 df-ndx 17164 df-mulr 17234 df-oppr 20246 |
| This theorem is referenced by: opprmul 20249 opprabs 33453 |
| Copyright terms: Public domain | W3C validator |