![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opprmulfval | Structured version Visualization version GIF version |
Description: Value of the multiplication operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
opprval.1 | ⊢ 𝐵 = (Base‘𝑅) |
opprval.2 | ⊢ · = (.r‘𝑅) |
opprval.3 | ⊢ 𝑂 = (oppr‘𝑅) |
opprmulfval.4 | ⊢ ∙ = (.r‘𝑂) |
Ref | Expression |
---|---|
opprmulfval | ⊢ ∙ = tpos · |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprmulfval.4 | . 2 ⊢ ∙ = (.r‘𝑂) | |
2 | opprval.1 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
3 | opprval.2 | . . . . . 6 ⊢ · = (.r‘𝑅) | |
4 | opprval.3 | . . . . . 6 ⊢ 𝑂 = (oppr‘𝑅) | |
5 | 2, 3, 4 | opprval 20352 | . . . . 5 ⊢ 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos · 〉) |
6 | 5 | fveq2i 6910 | . . . 4 ⊢ (.r‘𝑂) = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉)) |
7 | 3 | fvexi 6921 | . . . . . 6 ⊢ · ∈ V |
8 | 7 | tposex 8284 | . . . . 5 ⊢ tpos · ∈ V |
9 | mulridx 17340 | . . . . . 6 ⊢ .r = Slot (.r‘ndx) | |
10 | 9 | setsid 17242 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ tpos · ∈ V) → tpos · = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉))) |
11 | 8, 10 | mpan2 691 | . . . 4 ⊢ (𝑅 ∈ V → tpos · = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉))) |
12 | 6, 11 | eqtr4id 2794 | . . 3 ⊢ (𝑅 ∈ V → (.r‘𝑂) = tpos · ) |
13 | tpos0 8280 | . . . . 5 ⊢ tpos ∅ = ∅ | |
14 | 9 | str0 17223 | . . . . 5 ⊢ ∅ = (.r‘∅) |
15 | 13, 14 | eqtr2i 2764 | . . . 4 ⊢ (.r‘∅) = tpos ∅ |
16 | fvprc 6899 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (oppr‘𝑅) = ∅) | |
17 | 4, 16 | eqtrid 2787 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝑂 = ∅) |
18 | 17 | fveq2d 6911 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (.r‘𝑂) = (.r‘∅)) |
19 | fvprc 6899 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (.r‘𝑅) = ∅) | |
20 | 3, 19 | eqtrid 2787 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → · = ∅) |
21 | 20 | tposeqd 8253 | . . . 4 ⊢ (¬ 𝑅 ∈ V → tpos · = tpos ∅) |
22 | 15, 18, 21 | 3eqtr4a 2801 | . . 3 ⊢ (¬ 𝑅 ∈ V → (.r‘𝑂) = tpos · ) |
23 | 12, 22 | pm2.61i 182 | . 2 ⊢ (.r‘𝑂) = tpos · |
24 | 1, 23 | eqtri 2763 | 1 ⊢ ∙ = tpos · |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∅c0 4339 〈cop 4637 ‘cfv 6563 (class class class)co 7431 tpos ctpos 8249 sSet csts 17197 ndxcnx 17227 Basecbs 17245 .rcmulr 17299 opprcoppr 20350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-1cn 11211 ax-addcl 11213 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-nn 12265 df-2 12327 df-3 12328 df-sets 17198 df-slot 17216 df-ndx 17228 df-mulr 17312 df-oppr 20351 |
This theorem is referenced by: opprmul 20354 opprabs 33490 |
Copyright terms: Public domain | W3C validator |