Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opprmulfval | Structured version Visualization version GIF version |
Description: Value of the multiplication operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
opprval.1 | ⊢ 𝐵 = (Base‘𝑅) |
opprval.2 | ⊢ · = (.r‘𝑅) |
opprval.3 | ⊢ 𝑂 = (oppr‘𝑅) |
opprmulfval.4 | ⊢ ∙ = (.r‘𝑂) |
Ref | Expression |
---|---|
opprmulfval | ⊢ ∙ = tpos · |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprmulfval.4 | . 2 ⊢ ∙ = (.r‘𝑂) | |
2 | opprval.1 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
3 | opprval.2 | . . . . . 6 ⊢ · = (.r‘𝑅) | |
4 | opprval.3 | . . . . . 6 ⊢ 𝑂 = (oppr‘𝑅) | |
5 | 2, 3, 4 | opprval 19844 | . . . . 5 ⊢ 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos · 〉) |
6 | 5 | fveq2i 6771 | . . . 4 ⊢ (.r‘𝑂) = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉)) |
7 | 3 | fvexi 6782 | . . . . . 6 ⊢ · ∈ V |
8 | 7 | tposex 8060 | . . . . 5 ⊢ tpos · ∈ V |
9 | mulrid 16985 | . . . . . 6 ⊢ .r = Slot (.r‘ndx) | |
10 | 9 | setsid 16890 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ tpos · ∈ V) → tpos · = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉))) |
11 | 8, 10 | mpan2 687 | . . . 4 ⊢ (𝑅 ∈ V → tpos · = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉))) |
12 | 6, 11 | eqtr4id 2798 | . . 3 ⊢ (𝑅 ∈ V → (.r‘𝑂) = tpos · ) |
13 | tpos0 8056 | . . . . 5 ⊢ tpos ∅ = ∅ | |
14 | 9 | str0 16871 | . . . . 5 ⊢ ∅ = (.r‘∅) |
15 | 13, 14 | eqtr2i 2768 | . . . 4 ⊢ (.r‘∅) = tpos ∅ |
16 | fvprc 6760 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (oppr‘𝑅) = ∅) | |
17 | 4, 16 | eqtrid 2791 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝑂 = ∅) |
18 | 17 | fveq2d 6772 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (.r‘𝑂) = (.r‘∅)) |
19 | fvprc 6760 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (.r‘𝑅) = ∅) | |
20 | 3, 19 | eqtrid 2791 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → · = ∅) |
21 | 20 | tposeqd 8029 | . . . 4 ⊢ (¬ 𝑅 ∈ V → tpos · = tpos ∅) |
22 | 15, 18, 21 | 3eqtr4a 2805 | . . 3 ⊢ (¬ 𝑅 ∈ V → (.r‘𝑂) = tpos · ) |
23 | 12, 22 | pm2.61i 182 | . 2 ⊢ (.r‘𝑂) = tpos · |
24 | 1, 23 | eqtri 2767 | 1 ⊢ ∙ = tpos · |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ∅c0 4261 〈cop 4572 ‘cfv 6430 (class class class)co 7268 tpos ctpos 8025 sSet csts 16845 ndxcnx 16875 Basecbs 16893 .rcmulr 16944 opprcoppr 19842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-1cn 10913 ax-addcl 10915 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-tpos 8026 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-nn 11957 df-2 12019 df-3 12020 df-sets 16846 df-slot 16864 df-ndx 16876 df-mulr 16957 df-oppr 19843 |
This theorem is referenced by: opprmul 19846 |
Copyright terms: Public domain | W3C validator |