| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opprmulfval | Structured version Visualization version GIF version | ||
| Description: Value of the multiplication operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| Ref | Expression |
|---|---|
| opprval.1 | ⊢ 𝐵 = (Base‘𝑅) |
| opprval.2 | ⊢ · = (.r‘𝑅) |
| opprval.3 | ⊢ 𝑂 = (oppr‘𝑅) |
| opprmulfval.4 | ⊢ ∙ = (.r‘𝑂) |
| Ref | Expression |
|---|---|
| opprmulfval | ⊢ ∙ = tpos · |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprmulfval.4 | . 2 ⊢ ∙ = (.r‘𝑂) | |
| 2 | opprval.1 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | opprval.2 | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 4 | opprval.3 | . . . . . 6 ⊢ 𝑂 = (oppr‘𝑅) | |
| 5 | 2, 3, 4 | opprval 20298 | . . . . 5 ⊢ 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos · 〉) |
| 6 | 5 | fveq2i 6879 | . . . 4 ⊢ (.r‘𝑂) = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉)) |
| 7 | 3 | fvexi 6890 | . . . . . 6 ⊢ · ∈ V |
| 8 | 7 | tposex 8259 | . . . . 5 ⊢ tpos · ∈ V |
| 9 | mulridx 17309 | . . . . . 6 ⊢ .r = Slot (.r‘ndx) | |
| 10 | 9 | setsid 17226 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ tpos · ∈ V) → tpos · = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉))) |
| 11 | 8, 10 | mpan2 691 | . . . 4 ⊢ (𝑅 ∈ V → tpos · = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉))) |
| 12 | 6, 11 | eqtr4id 2789 | . . 3 ⊢ (𝑅 ∈ V → (.r‘𝑂) = tpos · ) |
| 13 | tpos0 8255 | . . . . 5 ⊢ tpos ∅ = ∅ | |
| 14 | 9 | str0 17208 | . . . . 5 ⊢ ∅ = (.r‘∅) |
| 15 | 13, 14 | eqtr2i 2759 | . . . 4 ⊢ (.r‘∅) = tpos ∅ |
| 16 | fvprc 6868 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (oppr‘𝑅) = ∅) | |
| 17 | 4, 16 | eqtrid 2782 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝑂 = ∅) |
| 18 | 17 | fveq2d 6880 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (.r‘𝑂) = (.r‘∅)) |
| 19 | fvprc 6868 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (.r‘𝑅) = ∅) | |
| 20 | 3, 19 | eqtrid 2782 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → · = ∅) |
| 21 | 20 | tposeqd 8228 | . . . 4 ⊢ (¬ 𝑅 ∈ V → tpos · = tpos ∅) |
| 22 | 15, 18, 21 | 3eqtr4a 2796 | . . 3 ⊢ (¬ 𝑅 ∈ V → (.r‘𝑂) = tpos · ) |
| 23 | 12, 22 | pm2.61i 182 | . 2 ⊢ (.r‘𝑂) = tpos · |
| 24 | 1, 23 | eqtri 2758 | 1 ⊢ ∙ = tpos · |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∅c0 4308 〈cop 4607 ‘cfv 6531 (class class class)co 7405 tpos ctpos 8224 sSet csts 17182 ndxcnx 17212 Basecbs 17228 .rcmulr 17272 opprcoppr 20296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-1cn 11187 ax-addcl 11189 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-nn 12241 df-2 12303 df-3 12304 df-sets 17183 df-slot 17201 df-ndx 17213 df-mulr 17285 df-oppr 20297 |
| This theorem is referenced by: opprmul 20300 opprabs 33497 |
| Copyright terms: Public domain | W3C validator |