Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opprmulfval | Structured version Visualization version GIF version |
Description: Value of the multiplication operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
opprval.1 | ⊢ 𝐵 = (Base‘𝑅) |
opprval.2 | ⊢ · = (.r‘𝑅) |
opprval.3 | ⊢ 𝑂 = (oppr‘𝑅) |
opprmulfval.4 | ⊢ ∙ = (.r‘𝑂) |
Ref | Expression |
---|---|
opprmulfval | ⊢ ∙ = tpos · |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprmulfval.4 | . 2 ⊢ ∙ = (.r‘𝑂) | |
2 | opprval.1 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
3 | opprval.2 | . . . . . 6 ⊢ · = (.r‘𝑅) | |
4 | opprval.3 | . . . . . 6 ⊢ 𝑂 = (oppr‘𝑅) | |
5 | 2, 3, 4 | opprval 19863 | . . . . 5 ⊢ 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos · 〉) |
6 | 5 | fveq2i 6777 | . . . 4 ⊢ (.r‘𝑂) = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉)) |
7 | 3 | fvexi 6788 | . . . . . 6 ⊢ · ∈ V |
8 | 7 | tposex 8076 | . . . . 5 ⊢ tpos · ∈ V |
9 | mulrid 17004 | . . . . . 6 ⊢ .r = Slot (.r‘ndx) | |
10 | 9 | setsid 16909 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ tpos · ∈ V) → tpos · = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉))) |
11 | 8, 10 | mpan2 688 | . . . 4 ⊢ (𝑅 ∈ V → tpos · = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉))) |
12 | 6, 11 | eqtr4id 2797 | . . 3 ⊢ (𝑅 ∈ V → (.r‘𝑂) = tpos · ) |
13 | tpos0 8072 | . . . . 5 ⊢ tpos ∅ = ∅ | |
14 | 9 | str0 16890 | . . . . 5 ⊢ ∅ = (.r‘∅) |
15 | 13, 14 | eqtr2i 2767 | . . . 4 ⊢ (.r‘∅) = tpos ∅ |
16 | fvprc 6766 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (oppr‘𝑅) = ∅) | |
17 | 4, 16 | eqtrid 2790 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝑂 = ∅) |
18 | 17 | fveq2d 6778 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (.r‘𝑂) = (.r‘∅)) |
19 | fvprc 6766 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (.r‘𝑅) = ∅) | |
20 | 3, 19 | eqtrid 2790 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → · = ∅) |
21 | 20 | tposeqd 8045 | . . . 4 ⊢ (¬ 𝑅 ∈ V → tpos · = tpos ∅) |
22 | 15, 18, 21 | 3eqtr4a 2804 | . . 3 ⊢ (¬ 𝑅 ∈ V → (.r‘𝑂) = tpos · ) |
23 | 12, 22 | pm2.61i 182 | . 2 ⊢ (.r‘𝑂) = tpos · |
24 | 1, 23 | eqtri 2766 | 1 ⊢ ∙ = tpos · |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 〈cop 4567 ‘cfv 6433 (class class class)co 7275 tpos ctpos 8041 sSet csts 16864 ndxcnx 16894 Basecbs 16912 .rcmulr 16963 opprcoppr 19861 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-1cn 10929 ax-addcl 10931 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-nn 11974 df-2 12036 df-3 12037 df-sets 16865 df-slot 16883 df-ndx 16895 df-mulr 16976 df-oppr 19862 |
This theorem is referenced by: opprmul 19865 |
Copyright terms: Public domain | W3C validator |