Proof of Theorem tposrescnv
| Step | Hyp | Ref
| Expression |
| 1 | | df-tpos 8247 |
. . 3
⊢ tpos
𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) |
| 2 | 1 | reseq1i 5991 |
. 2
⊢ (tpos
𝐹 ↾ ◡𝑅) = ((𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) ↾ ◡𝑅) |
| 3 | | resco 6268 |
. 2
⊢ ((𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) ↾ ◡𝑅) = (𝐹 ∘ ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ↾ ◡𝑅)) |
| 4 | | resmpt3 6054 |
. . . 4
⊢ ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ↾ ◡𝑅) = (𝑥 ∈ ((◡dom 𝐹 ∪ {∅}) ∩ ◡𝑅) ↦ ∪ ◡{𝑥}) |
| 5 | | cnvin 6162 |
. . . . . 6
⊢ ◡(𝑅 ∩ dom 𝐹) = (◡𝑅 ∩ ◡dom 𝐹) |
| 6 | | dmres 6028 |
. . . . . . 7
⊢ dom
(𝐹 ↾ 𝑅) = (𝑅 ∩ dom 𝐹) |
| 7 | 6 | cnveqi 5883 |
. . . . . 6
⊢ ◡dom (𝐹 ↾ 𝑅) = ◡(𝑅 ∩ dom 𝐹) |
| 8 | | incom 4208 |
. . . . . . 7
⊢ ((◡dom 𝐹 ∪ {∅}) ∩ ◡𝑅) = (◡𝑅 ∩ (◡dom 𝐹 ∪ {∅})) |
| 9 | | indi 4283 |
. . . . . . 7
⊢ (◡𝑅 ∩ (◡dom 𝐹 ∪ {∅})) = ((◡𝑅 ∩ ◡dom 𝐹) ∪ (◡𝑅 ∩ {∅})) |
| 10 | | relcnv 6120 |
. . . . . . . . . . 11
⊢ Rel ◡𝑅 |
| 11 | | 0nelrel0 5743 |
. . . . . . . . . . 11
⊢ (Rel
◡𝑅 → ¬ ∅ ∈ ◡𝑅) |
| 12 | 10, 11 | ax-mp 5 |
. . . . . . . . . 10
⊢ ¬
∅ ∈ ◡𝑅 |
| 13 | | disjsn 4709 |
. . . . . . . . . 10
⊢ ((◡𝑅 ∩ {∅}) = ∅ ↔ ¬
∅ ∈ ◡𝑅) |
| 14 | 12, 13 | mpbir 231 |
. . . . . . . . 9
⊢ (◡𝑅 ∩ {∅}) = ∅ |
| 15 | 14 | uneq2i 4164 |
. . . . . . . 8
⊢ ((◡𝑅 ∩ ◡dom 𝐹) ∪ (◡𝑅 ∩ {∅})) = ((◡𝑅 ∩ ◡dom 𝐹) ∪ ∅) |
| 16 | | un0 4393 |
. . . . . . . 8
⊢ ((◡𝑅 ∩ ◡dom 𝐹) ∪ ∅) = (◡𝑅 ∩ ◡dom 𝐹) |
| 17 | 15, 16 | eqtri 2764 |
. . . . . . 7
⊢ ((◡𝑅 ∩ ◡dom 𝐹) ∪ (◡𝑅 ∩ {∅})) = (◡𝑅 ∩ ◡dom 𝐹) |
| 18 | 8, 9, 17 | 3eqtri 2768 |
. . . . . 6
⊢ ((◡dom 𝐹 ∪ {∅}) ∩ ◡𝑅) = (◡𝑅 ∩ ◡dom 𝐹) |
| 19 | 5, 7, 18 | 3eqtr4ri 2775 |
. . . . 5
⊢ ((◡dom 𝐹 ∪ {∅}) ∩ ◡𝑅) = ◡dom (𝐹 ↾ 𝑅) |
| 20 | 19 | mpteq1i 5236 |
. . . 4
⊢ (𝑥 ∈ ((◡dom 𝐹 ∪ {∅}) ∩ ◡𝑅) ↦ ∪ ◡{𝑥}) = (𝑥 ∈ ◡dom (𝐹 ↾ 𝑅) ↦ ∪ ◡{𝑥}) |
| 21 | 4, 20 | eqtri 2764 |
. . 3
⊢ ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ↾ ◡𝑅) = (𝑥 ∈ ◡dom (𝐹 ↾ 𝑅) ↦ ∪ ◡{𝑥}) |
| 22 | 21 | coeq2i 5869 |
. 2
⊢ (𝐹 ∘ ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ↾ ◡𝑅)) = (𝐹 ∘ (𝑥 ∈ ◡dom (𝐹 ↾ 𝑅) ↦ ∪ ◡{𝑥})) |
| 23 | 2, 3, 22 | 3eqtri 2768 |
1
⊢ (tpos
𝐹 ↾ ◡𝑅) = (𝐹 ∘ (𝑥 ∈ ◡dom (𝐹 ↾ 𝑅) ↦ ∪ ◡{𝑥})) |