Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tposrescnv Structured version   Visualization version   GIF version

Theorem tposrescnv 48752
Description: The transposition restricted to a converse is the transposition of the restricted class, with the empty set removed from the domain. Note that the right hand side is a more useful form of (tpos (𝐹𝑅) ↾ (V ∖ {∅})) by df-tpos 8247. (Contributed by Zhi Wang, 6-Oct-2025.)
Assertion
Ref Expression
tposrescnv (tpos 𝐹𝑅) = (𝐹 ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥}))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑅

Proof of Theorem tposrescnv
StepHypRef Expression
1 df-tpos 8247 . . 3 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
21reseq1i 5991 . 2 (tpos 𝐹𝑅) = ((𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ↾ 𝑅)
3 resco 6268 . 2 ((𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ↾ 𝑅) = (𝐹 ∘ ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ↾ 𝑅))
4 resmpt3 6054 . . . 4 ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ↾ 𝑅) = (𝑥 ∈ ((dom 𝐹 ∪ {∅}) ∩ 𝑅) ↦ {𝑥})
5 cnvin 6162 . . . . . 6 (𝑅 ∩ dom 𝐹) = (𝑅dom 𝐹)
6 dmres 6028 . . . . . . 7 dom (𝐹𝑅) = (𝑅 ∩ dom 𝐹)
76cnveqi 5883 . . . . . 6 dom (𝐹𝑅) = (𝑅 ∩ dom 𝐹)
8 incom 4208 . . . . . . 7 ((dom 𝐹 ∪ {∅}) ∩ 𝑅) = (𝑅 ∩ (dom 𝐹 ∪ {∅}))
9 indi 4283 . . . . . . 7 (𝑅 ∩ (dom 𝐹 ∪ {∅})) = ((𝑅dom 𝐹) ∪ (𝑅 ∩ {∅}))
10 relcnv 6120 . . . . . . . . . . 11 Rel 𝑅
11 0nelrel0 5743 . . . . . . . . . . 11 (Rel 𝑅 → ¬ ∅ ∈ 𝑅)
1210, 11ax-mp 5 . . . . . . . . . 10 ¬ ∅ ∈ 𝑅
13 disjsn 4709 . . . . . . . . . 10 ((𝑅 ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ 𝑅)
1412, 13mpbir 231 . . . . . . . . 9 (𝑅 ∩ {∅}) = ∅
1514uneq2i 4164 . . . . . . . 8 ((𝑅dom 𝐹) ∪ (𝑅 ∩ {∅})) = ((𝑅dom 𝐹) ∪ ∅)
16 un0 4393 . . . . . . . 8 ((𝑅dom 𝐹) ∪ ∅) = (𝑅dom 𝐹)
1715, 16eqtri 2764 . . . . . . 7 ((𝑅dom 𝐹) ∪ (𝑅 ∩ {∅})) = (𝑅dom 𝐹)
188, 9, 173eqtri 2768 . . . . . 6 ((dom 𝐹 ∪ {∅}) ∩ 𝑅) = (𝑅dom 𝐹)
195, 7, 183eqtr4ri 2775 . . . . 5 ((dom 𝐹 ∪ {∅}) ∩ 𝑅) = dom (𝐹𝑅)
2019mpteq1i 5236 . . . 4 (𝑥 ∈ ((dom 𝐹 ∪ {∅}) ∩ 𝑅) ↦ {𝑥}) = (𝑥dom (𝐹𝑅) ↦ {𝑥})
214, 20eqtri 2764 . . 3 ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ↾ 𝑅) = (𝑥dom (𝐹𝑅) ↦ {𝑥})
2221coeq2i 5869 . 2 (𝐹 ∘ ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ↾ 𝑅)) = (𝐹 ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥}))
232, 3, 223eqtri 2768 1 (tpos 𝐹𝑅) = (𝐹 ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2108  cun 3948  cin 3949  c0 4332  {csn 4624   cuni 4905  cmpt 5223  ccnv 5682  dom cdm 5683  cres 5685  ccom 5687  Rel wrel 5688  tpos ctpos 8246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2707  ax-sep 5294  ax-nul 5304  ax-pr 5430
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5142  df-opab 5204  df-mpt 5224  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-res 5695  df-tpos 8247
This theorem is referenced by:  tposres3  48754
  Copyright terms: Public domain W3C validator