Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tposrescnv Structured version   Visualization version   GIF version

Theorem tposrescnv 48910
Description: The transposition restricted to a converse is the transposition of the restricted class, with the empty set removed from the domain. Note that the right hand side is a more useful form of (tpos (𝐹𝑅) ↾ (V ∖ {∅})) by df-tpos 8151. (Contributed by Zhi Wang, 6-Oct-2025.)
Assertion
Ref Expression
tposrescnv (tpos 𝐹𝑅) = (𝐹 ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥}))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑅

Proof of Theorem tposrescnv
StepHypRef Expression
1 df-tpos 8151 . . 3 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
21reseq1i 5919 . 2 (tpos 𝐹𝑅) = ((𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ↾ 𝑅)
3 resco 6192 . 2 ((𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ↾ 𝑅) = (𝐹 ∘ ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ↾ 𝑅))
4 resmpt3 5982 . . . 4 ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ↾ 𝑅) = (𝑥 ∈ ((dom 𝐹 ∪ {∅}) ∩ 𝑅) ↦ {𝑥})
5 cnvin 6086 . . . . . 6 (𝑅 ∩ dom 𝐹) = (𝑅dom 𝐹)
6 dmres 5956 . . . . . . 7 dom (𝐹𝑅) = (𝑅 ∩ dom 𝐹)
76cnveqi 5809 . . . . . 6 dom (𝐹𝑅) = (𝑅 ∩ dom 𝐹)
8 incom 4154 . . . . . . 7 ((dom 𝐹 ∪ {∅}) ∩ 𝑅) = (𝑅 ∩ (dom 𝐹 ∪ {∅}))
9 indi 4229 . . . . . . 7 (𝑅 ∩ (dom 𝐹 ∪ {∅})) = ((𝑅dom 𝐹) ∪ (𝑅 ∩ {∅}))
10 relcnv 6048 . . . . . . . . . . 11 Rel 𝑅
11 0nelrel0 5671 . . . . . . . . . . 11 (Rel 𝑅 → ¬ ∅ ∈ 𝑅)
1210, 11ax-mp 5 . . . . . . . . . 10 ¬ ∅ ∈ 𝑅
13 disjsn 4659 . . . . . . . . . 10 ((𝑅 ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ 𝑅)
1412, 13mpbir 231 . . . . . . . . 9 (𝑅 ∩ {∅}) = ∅
1514uneq2i 4110 . . . . . . . 8 ((𝑅dom 𝐹) ∪ (𝑅 ∩ {∅})) = ((𝑅dom 𝐹) ∪ ∅)
16 un0 4339 . . . . . . . 8 ((𝑅dom 𝐹) ∪ ∅) = (𝑅dom 𝐹)
1715, 16eqtri 2754 . . . . . . 7 ((𝑅dom 𝐹) ∪ (𝑅 ∩ {∅})) = (𝑅dom 𝐹)
188, 9, 173eqtri 2758 . . . . . 6 ((dom 𝐹 ∪ {∅}) ∩ 𝑅) = (𝑅dom 𝐹)
195, 7, 183eqtr4ri 2765 . . . . 5 ((dom 𝐹 ∪ {∅}) ∩ 𝑅) = dom (𝐹𝑅)
2019mpteq1i 5177 . . . 4 (𝑥 ∈ ((dom 𝐹 ∪ {∅}) ∩ 𝑅) ↦ {𝑥}) = (𝑥dom (𝐹𝑅) ↦ {𝑥})
214, 20eqtri 2754 . . 3 ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ↾ 𝑅) = (𝑥dom (𝐹𝑅) ↦ {𝑥})
2221coeq2i 5795 . 2 (𝐹 ∘ ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ↾ 𝑅)) = (𝐹 ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥}))
232, 3, 223eqtri 2758 1 (tpos 𝐹𝑅) = (𝐹 ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2111  cun 3895  cin 3896  c0 4278  {csn 4571   cuni 4854  cmpt 5167  ccnv 5610  dom cdm 5611  cres 5613  ccom 5615  Rel wrel 5616  tpos ctpos 8150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-mpt 5168  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-res 5623  df-tpos 8151
This theorem is referenced by:  tposres3  48912
  Copyright terms: Public domain W3C validator