Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tposres3 Structured version   Visualization version   GIF version

Theorem tposres3 48912
Description: The transposition restricted to a set. (Contributed by Zhi Wang, 6-Oct-2025.)
Hypothesis
Ref Expression
tposres2.1 (𝜑 → ¬ ∅ ∈ (dom 𝐹𝑅))
Assertion
Ref Expression
tposres3 (𝜑 → (tpos 𝐹𝑅) = tpos (𝐹𝑅))

Proof of Theorem tposres3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tposres2.1 . . 3 (𝜑 → ¬ ∅ ∈ (dom 𝐹𝑅))
21tposres2 48911 . 2 (𝜑 → (tpos 𝐹𝑅) = (tpos 𝐹𝑅))
3 relcnv 6048 . . . . . . . 8 Rel dom (𝐹𝑅)
4 cnvf1o 8036 . . . . . . . 8 (Rel dom (𝐹𝑅) → (𝑥dom (𝐹𝑅) ↦ {𝑥}):dom (𝐹𝑅)–1-1-ontodom (𝐹𝑅))
53, 4ax-mp 5 . . . . . . 7 (𝑥dom (𝐹𝑅) ↦ {𝑥}):dom (𝐹𝑅)–1-1-ontodom (𝐹𝑅)
6 f1ofo 6765 . . . . . . 7 ((𝑥dom (𝐹𝑅) ↦ {𝑥}):dom (𝐹𝑅)–1-1-ontodom (𝐹𝑅) → (𝑥dom (𝐹𝑅) ↦ {𝑥}):dom (𝐹𝑅)–ontodom (𝐹𝑅))
75, 6ax-mp 5 . . . . . 6 (𝑥dom (𝐹𝑅) ↦ {𝑥}):dom (𝐹𝑅)–ontodom (𝐹𝑅)
8 forn 6733 . . . . . 6 ((𝑥dom (𝐹𝑅) ↦ {𝑥}):dom (𝐹𝑅)–ontodom (𝐹𝑅) → ran (𝑥dom (𝐹𝑅) ↦ {𝑥}) = dom (𝐹𝑅))
97, 8ax-mp 5 . . . . 5 ran (𝑥dom (𝐹𝑅) ↦ {𝑥}) = dom (𝐹𝑅)
10 cnvcnvss 6136 . . . . . 6 dom (𝐹𝑅) ⊆ dom (𝐹𝑅)
11 resdmss 6177 . . . . . 6 dom (𝐹𝑅) ⊆ 𝑅
1210, 11sstri 3939 . . . . 5 dom (𝐹𝑅) ⊆ 𝑅
139, 12eqsstri 3976 . . . 4 ran (𝑥dom (𝐹𝑅) ↦ {𝑥}) ⊆ 𝑅
14 cores 6191 . . . 4 (ran (𝑥dom (𝐹𝑅) ↦ {𝑥}) ⊆ 𝑅 → ((𝐹𝑅) ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥})) = (𝐹 ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥})))
1513, 14ax-mp 5 . . 3 ((𝐹𝑅) ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥})) = (𝐹 ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥}))
16 dftpos6 48906 . . . 4 tpos (𝐹𝑅) = (((𝐹𝑅) ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥})) ∪ ({∅} × ((𝐹𝑅) “ {∅})))
17 ressn 6227 . . . . . 6 ((𝐹𝑅) ↾ {∅}) = ({∅} × ((𝐹𝑅) “ {∅}))
18 resres 5936 . . . . . . 7 ((𝐹𝑅) ↾ {∅}) = (𝐹 ↾ (𝑅 ∩ {∅}))
19 relcnv 6048 . . . . . . . . . 10 Rel 𝑅
20 0nelrel0 5671 . . . . . . . . . 10 (Rel 𝑅 → ¬ ∅ ∈ 𝑅)
2119, 20ax-mp 5 . . . . . . . . 9 ¬ ∅ ∈ 𝑅
22 disjsn 4659 . . . . . . . . 9 ((𝑅 ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ 𝑅)
2321, 22mpbir 231 . . . . . . . 8 (𝑅 ∩ {∅}) = ∅
2423reseq2i 5920 . . . . . . 7 (𝐹 ↾ (𝑅 ∩ {∅})) = (𝐹 ↾ ∅)
25 res0 5927 . . . . . . 7 (𝐹 ↾ ∅) = ∅
2618, 24, 253eqtri 2758 . . . . . 6 ((𝐹𝑅) ↾ {∅}) = ∅
2717, 26eqtr3i 2756 . . . . 5 ({∅} × ((𝐹𝑅) “ {∅})) = ∅
2827uneq2i 4110 . . . 4 (((𝐹𝑅) ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥})) ∪ ({∅} × ((𝐹𝑅) “ {∅}))) = (((𝐹𝑅) ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥})) ∪ ∅)
29 un0 4339 . . . 4 (((𝐹𝑅) ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥})) ∪ ∅) = ((𝐹𝑅) ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥}))
3016, 28, 293eqtri 2758 . . 3 tpos (𝐹𝑅) = ((𝐹𝑅) ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥}))
31 tposrescnv 48910 . . 3 (tpos 𝐹𝑅) = (𝐹 ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥}))
3215, 30, 313eqtr4ri 2765 . 2 (tpos 𝐹𝑅) = tpos (𝐹𝑅)
332, 32eqtrdi 2782 1 (𝜑 → (tpos 𝐹𝑅) = tpos (𝐹𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2111  cun 3895  cin 3896  wss 3897  c0 4278  {csn 4571   cuni 4854  cmpt 5167   × cxp 5609  ccnv 5610  dom cdm 5611  ran crn 5612  cres 5613  cima 5614  ccom 5615  Rel wrel 5616  ontowfo 6474  1-1-ontowf1o 6475  tpos ctpos 8150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-1st 7916  df-2nd 7917  df-tpos 8151
This theorem is referenced by:  tposres  48913
  Copyright terms: Public domain W3C validator