Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tposres3 Structured version   Visualization version   GIF version

Theorem tposres3 49042
Description: The transposition restricted to a set. (Contributed by Zhi Wang, 6-Oct-2025.)
Hypothesis
Ref Expression
tposres2.1 (𝜑 → ¬ ∅ ∈ (dom 𝐹𝑅))
Assertion
Ref Expression
tposres3 (𝜑 → (tpos 𝐹𝑅) = tpos (𝐹𝑅))

Proof of Theorem tposres3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tposres2.1 . . 3 (𝜑 → ¬ ∅ ∈ (dom 𝐹𝑅))
21tposres2 49041 . 2 (𝜑 → (tpos 𝐹𝑅) = (tpos 𝐹𝑅))
3 relcnv 6060 . . . . . . . 8 Rel dom (𝐹𝑅)
4 cnvf1o 8050 . . . . . . . 8 (Rel dom (𝐹𝑅) → (𝑥dom (𝐹𝑅) ↦ {𝑥}):dom (𝐹𝑅)–1-1-ontodom (𝐹𝑅))
53, 4ax-mp 5 . . . . . . 7 (𝑥dom (𝐹𝑅) ↦ {𝑥}):dom (𝐹𝑅)–1-1-ontodom (𝐹𝑅)
6 f1ofo 6778 . . . . . . 7 ((𝑥dom (𝐹𝑅) ↦ {𝑥}):dom (𝐹𝑅)–1-1-ontodom (𝐹𝑅) → (𝑥dom (𝐹𝑅) ↦ {𝑥}):dom (𝐹𝑅)–ontodom (𝐹𝑅))
75, 6ax-mp 5 . . . . . 6 (𝑥dom (𝐹𝑅) ↦ {𝑥}):dom (𝐹𝑅)–ontodom (𝐹𝑅)
8 forn 6746 . . . . . 6 ((𝑥dom (𝐹𝑅) ↦ {𝑥}):dom (𝐹𝑅)–ontodom (𝐹𝑅) → ran (𝑥dom (𝐹𝑅) ↦ {𝑥}) = dom (𝐹𝑅))
97, 8ax-mp 5 . . . . 5 ran (𝑥dom (𝐹𝑅) ↦ {𝑥}) = dom (𝐹𝑅)
10 cnvcnvss 6149 . . . . . 6 dom (𝐹𝑅) ⊆ dom (𝐹𝑅)
11 resdmss 6190 . . . . . 6 dom (𝐹𝑅) ⊆ 𝑅
1210, 11sstri 3940 . . . . 5 dom (𝐹𝑅) ⊆ 𝑅
139, 12eqsstri 3977 . . . 4 ran (𝑥dom (𝐹𝑅) ↦ {𝑥}) ⊆ 𝑅
14 cores 6204 . . . 4 (ran (𝑥dom (𝐹𝑅) ↦ {𝑥}) ⊆ 𝑅 → ((𝐹𝑅) ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥})) = (𝐹 ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥})))
1513, 14ax-mp 5 . . 3 ((𝐹𝑅) ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥})) = (𝐹 ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥}))
16 dftpos6 49036 . . . 4 tpos (𝐹𝑅) = (((𝐹𝑅) ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥})) ∪ ({∅} × ((𝐹𝑅) “ {∅})))
17 ressn 6240 . . . . . 6 ((𝐹𝑅) ↾ {∅}) = ({∅} × ((𝐹𝑅) “ {∅}))
18 resres 5948 . . . . . . 7 ((𝐹𝑅) ↾ {∅}) = (𝐹 ↾ (𝑅 ∩ {∅}))
19 relcnv 6060 . . . . . . . . . 10 Rel 𝑅
20 0nelrel0 5681 . . . . . . . . . 10 (Rel 𝑅 → ¬ ∅ ∈ 𝑅)
2119, 20ax-mp 5 . . . . . . . . 9 ¬ ∅ ∈ 𝑅
22 disjsn 4665 . . . . . . . . 9 ((𝑅 ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ 𝑅)
2321, 22mpbir 231 . . . . . . . 8 (𝑅 ∩ {∅}) = ∅
2423reseq2i 5932 . . . . . . 7 (𝐹 ↾ (𝑅 ∩ {∅})) = (𝐹 ↾ ∅)
25 res0 5939 . . . . . . 7 (𝐹 ↾ ∅) = ∅
2618, 24, 253eqtri 2760 . . . . . 6 ((𝐹𝑅) ↾ {∅}) = ∅
2717, 26eqtr3i 2758 . . . . 5 ({∅} × ((𝐹𝑅) “ {∅})) = ∅
2827uneq2i 4114 . . . 4 (((𝐹𝑅) ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥})) ∪ ({∅} × ((𝐹𝑅) “ {∅}))) = (((𝐹𝑅) ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥})) ∪ ∅)
29 un0 4343 . . . 4 (((𝐹𝑅) ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥})) ∪ ∅) = ((𝐹𝑅) ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥}))
3016, 28, 293eqtri 2760 . . 3 tpos (𝐹𝑅) = ((𝐹𝑅) ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥}))
31 tposrescnv 49040 . . 3 (tpos 𝐹𝑅) = (𝐹 ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥}))
3215, 30, 313eqtr4ri 2767 . 2 (tpos 𝐹𝑅) = tpos (𝐹𝑅)
332, 32eqtrdi 2784 1 (𝜑 → (tpos 𝐹𝑅) = tpos (𝐹𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2113  cun 3896  cin 3897  wss 3898  c0 4282  {csn 4577   cuni 4860  cmpt 5176   × cxp 5619  ccnv 5620  dom cdm 5621  ran crn 5622  cres 5623  cima 5624  ccom 5625  Rel wrel 5626  ontowfo 6487  1-1-ontowf1o 6488  tpos ctpos 8164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-1st 7930  df-2nd 7931  df-tpos 8165
This theorem is referenced by:  tposres  49043
  Copyright terms: Public domain W3C validator