| Step | Hyp | Ref
| Expression |
| 1 | | tposres2.1 |
. . 3
⊢ (𝜑 → ¬ ∅ ∈ (dom
𝐹 ∩ 𝑅)) |
| 2 | 1 | tposres2 48753 |
. 2
⊢ (𝜑 → (tpos 𝐹 ↾ 𝑅) = (tpos 𝐹 ↾ ◡◡𝑅)) |
| 3 | | relcnv 6120 |
. . . . . . . 8
⊢ Rel ◡dom (𝐹 ↾ ◡𝑅) |
| 4 | | cnvf1o 8132 |
. . . . . . . 8
⊢ (Rel
◡dom (𝐹 ↾ ◡𝑅) → (𝑥 ∈ ◡dom (𝐹 ↾ ◡𝑅) ↦ ∪ ◡{𝑥}):◡dom (𝐹 ↾ ◡𝑅)–1-1-onto→◡◡dom
(𝐹 ↾ ◡𝑅)) |
| 5 | 3, 4 | ax-mp 5 |
. . . . . . 7
⊢ (𝑥 ∈ ◡dom (𝐹 ↾ ◡𝑅) ↦ ∪ ◡{𝑥}):◡dom (𝐹 ↾ ◡𝑅)–1-1-onto→◡◡dom
(𝐹 ↾ ◡𝑅) |
| 6 | | f1ofo 6853 |
. . . . . . 7
⊢ ((𝑥 ∈ ◡dom (𝐹 ↾ ◡𝑅) ↦ ∪ ◡{𝑥}):◡dom (𝐹 ↾ ◡𝑅)–1-1-onto→◡◡dom
(𝐹 ↾ ◡𝑅) → (𝑥 ∈ ◡dom (𝐹 ↾ ◡𝑅) ↦ ∪ ◡{𝑥}):◡dom (𝐹 ↾ ◡𝑅)–onto→◡◡dom (𝐹 ↾ ◡𝑅)) |
| 7 | 5, 6 | ax-mp 5 |
. . . . . 6
⊢ (𝑥 ∈ ◡dom (𝐹 ↾ ◡𝑅) ↦ ∪ ◡{𝑥}):◡dom (𝐹 ↾ ◡𝑅)–onto→◡◡dom (𝐹 ↾ ◡𝑅) |
| 8 | | forn 6821 |
. . . . . 6
⊢ ((𝑥 ∈ ◡dom (𝐹 ↾ ◡𝑅) ↦ ∪ ◡{𝑥}):◡dom (𝐹 ↾ ◡𝑅)–onto→◡◡dom (𝐹 ↾ ◡𝑅) → ran (𝑥 ∈ ◡dom (𝐹 ↾ ◡𝑅) ↦ ∪ ◡{𝑥}) = ◡◡dom
(𝐹 ↾ ◡𝑅)) |
| 9 | 7, 8 | ax-mp 5 |
. . . . 5
⊢ ran
(𝑥 ∈ ◡dom (𝐹 ↾ ◡𝑅) ↦ ∪ ◡{𝑥}) = ◡◡dom
(𝐹 ↾ ◡𝑅) |
| 10 | | cnvcnvss 6212 |
. . . . . 6
⊢ ◡◡dom
(𝐹 ↾ ◡𝑅) ⊆ dom (𝐹 ↾ ◡𝑅) |
| 11 | | resdmss 6253 |
. . . . . 6
⊢ dom
(𝐹 ↾ ◡𝑅) ⊆ ◡𝑅 |
| 12 | 10, 11 | sstri 3992 |
. . . . 5
⊢ ◡◡dom
(𝐹 ↾ ◡𝑅) ⊆ ◡𝑅 |
| 13 | 9, 12 | eqsstri 4029 |
. . . 4
⊢ ran
(𝑥 ∈ ◡dom (𝐹 ↾ ◡𝑅) ↦ ∪ ◡{𝑥}) ⊆ ◡𝑅 |
| 14 | | cores 6267 |
. . . 4
⊢ (ran
(𝑥 ∈ ◡dom (𝐹 ↾ ◡𝑅) ↦ ∪ ◡{𝑥}) ⊆ ◡𝑅 → ((𝐹 ↾ ◡𝑅) ∘ (𝑥 ∈ ◡dom (𝐹 ↾ ◡𝑅) ↦ ∪ ◡{𝑥})) = (𝐹 ∘ (𝑥 ∈ ◡dom (𝐹 ↾ ◡𝑅) ↦ ∪ ◡{𝑥}))) |
| 15 | 13, 14 | ax-mp 5 |
. . 3
⊢ ((𝐹 ↾ ◡𝑅) ∘ (𝑥 ∈ ◡dom (𝐹 ↾ ◡𝑅) ↦ ∪ ◡{𝑥})) = (𝐹 ∘ (𝑥 ∈ ◡dom (𝐹 ↾ ◡𝑅) ↦ ∪ ◡{𝑥})) |
| 16 | | dftpos6 48748 |
. . . 4
⊢ tpos
(𝐹 ↾ ◡𝑅) = (((𝐹 ↾ ◡𝑅) ∘ (𝑥 ∈ ◡dom (𝐹 ↾ ◡𝑅) ↦ ∪ ◡{𝑥})) ∪ ({∅} × ((𝐹 ↾ ◡𝑅) “ {∅}))) |
| 17 | | ressn 6303 |
. . . . . 6
⊢ ((𝐹 ↾ ◡𝑅) ↾ {∅}) = ({∅} ×
((𝐹 ↾ ◡𝑅) “ {∅})) |
| 18 | | resres 6008 |
. . . . . . 7
⊢ ((𝐹 ↾ ◡𝑅) ↾ {∅}) = (𝐹 ↾ (◡𝑅 ∩ {∅})) |
| 19 | | relcnv 6120 |
. . . . . . . . . 10
⊢ Rel ◡𝑅 |
| 20 | | 0nelrel0 5743 |
. . . . . . . . . 10
⊢ (Rel
◡𝑅 → ¬ ∅ ∈ ◡𝑅) |
| 21 | 19, 20 | ax-mp 5 |
. . . . . . . . 9
⊢ ¬
∅ ∈ ◡𝑅 |
| 22 | | disjsn 4709 |
. . . . . . . . 9
⊢ ((◡𝑅 ∩ {∅}) = ∅ ↔ ¬
∅ ∈ ◡𝑅) |
| 23 | 21, 22 | mpbir 231 |
. . . . . . . 8
⊢ (◡𝑅 ∩ {∅}) = ∅ |
| 24 | 23 | reseq2i 5992 |
. . . . . . 7
⊢ (𝐹 ↾ (◡𝑅 ∩ {∅})) = (𝐹 ↾ ∅) |
| 25 | | res0 5999 |
. . . . . . 7
⊢ (𝐹 ↾ ∅) =
∅ |
| 26 | 18, 24, 25 | 3eqtri 2768 |
. . . . . 6
⊢ ((𝐹 ↾ ◡𝑅) ↾ {∅}) =
∅ |
| 27 | 17, 26 | eqtr3i 2766 |
. . . . 5
⊢
({∅} × ((𝐹 ↾ ◡𝑅) “ {∅})) =
∅ |
| 28 | 27 | uneq2i 4164 |
. . . 4
⊢ (((𝐹 ↾ ◡𝑅) ∘ (𝑥 ∈ ◡dom (𝐹 ↾ ◡𝑅) ↦ ∪ ◡{𝑥})) ∪ ({∅} × ((𝐹 ↾ ◡𝑅) “ {∅}))) = (((𝐹 ↾ ◡𝑅) ∘ (𝑥 ∈ ◡dom (𝐹 ↾ ◡𝑅) ↦ ∪ ◡{𝑥})) ∪ ∅) |
| 29 | | un0 4393 |
. . . 4
⊢ (((𝐹 ↾ ◡𝑅) ∘ (𝑥 ∈ ◡dom (𝐹 ↾ ◡𝑅) ↦ ∪ ◡{𝑥})) ∪ ∅) = ((𝐹 ↾ ◡𝑅) ∘ (𝑥 ∈ ◡dom (𝐹 ↾ ◡𝑅) ↦ ∪ ◡{𝑥})) |
| 30 | 16, 28, 29 | 3eqtri 2768 |
. . 3
⊢ tpos
(𝐹 ↾ ◡𝑅) = ((𝐹 ↾ ◡𝑅) ∘ (𝑥 ∈ ◡dom (𝐹 ↾ ◡𝑅) ↦ ∪ ◡{𝑥})) |
| 31 | | tposrescnv 48752 |
. . 3
⊢ (tpos
𝐹 ↾ ◡◡𝑅) = (𝐹 ∘ (𝑥 ∈ ◡dom (𝐹 ↾ ◡𝑅) ↦ ∪ ◡{𝑥})) |
| 32 | 15, 30, 31 | 3eqtr4ri 2775 |
. 2
⊢ (tpos
𝐹 ↾ ◡◡𝑅) = tpos (𝐹 ↾ ◡𝑅) |
| 33 | 2, 32 | eqtrdi 2792 |
1
⊢ (𝜑 → (tpos 𝐹 ↾ 𝑅) = tpos (𝐹 ↾ ◡𝑅)) |