Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tposres3 Structured version   Visualization version   GIF version

Theorem tposres3 48857
Description: The transposition restricted to a set. (Contributed by Zhi Wang, 6-Oct-2025.)
Hypothesis
Ref Expression
tposres2.1 (𝜑 → ¬ ∅ ∈ (dom 𝐹𝑅))
Assertion
Ref Expression
tposres3 (𝜑 → (tpos 𝐹𝑅) = tpos (𝐹𝑅))

Proof of Theorem tposres3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tposres2.1 . . 3 (𝜑 → ¬ ∅ ∈ (dom 𝐹𝑅))
21tposres2 48856 . 2 (𝜑 → (tpos 𝐹𝑅) = (tpos 𝐹𝑅))
3 relcnv 6077 . . . . . . . 8 Rel dom (𝐹𝑅)
4 cnvf1o 8092 . . . . . . . 8 (Rel dom (𝐹𝑅) → (𝑥dom (𝐹𝑅) ↦ {𝑥}):dom (𝐹𝑅)–1-1-ontodom (𝐹𝑅))
53, 4ax-mp 5 . . . . . . 7 (𝑥dom (𝐹𝑅) ↦ {𝑥}):dom (𝐹𝑅)–1-1-ontodom (𝐹𝑅)
6 f1ofo 6809 . . . . . . 7 ((𝑥dom (𝐹𝑅) ↦ {𝑥}):dom (𝐹𝑅)–1-1-ontodom (𝐹𝑅) → (𝑥dom (𝐹𝑅) ↦ {𝑥}):dom (𝐹𝑅)–ontodom (𝐹𝑅))
75, 6ax-mp 5 . . . . . 6 (𝑥dom (𝐹𝑅) ↦ {𝑥}):dom (𝐹𝑅)–ontodom (𝐹𝑅)
8 forn 6777 . . . . . 6 ((𝑥dom (𝐹𝑅) ↦ {𝑥}):dom (𝐹𝑅)–ontodom (𝐹𝑅) → ran (𝑥dom (𝐹𝑅) ↦ {𝑥}) = dom (𝐹𝑅))
97, 8ax-mp 5 . . . . 5 ran (𝑥dom (𝐹𝑅) ↦ {𝑥}) = dom (𝐹𝑅)
10 cnvcnvss 6169 . . . . . 6 dom (𝐹𝑅) ⊆ dom (𝐹𝑅)
11 resdmss 6210 . . . . . 6 dom (𝐹𝑅) ⊆ 𝑅
1210, 11sstri 3958 . . . . 5 dom (𝐹𝑅) ⊆ 𝑅
139, 12eqsstri 3995 . . . 4 ran (𝑥dom (𝐹𝑅) ↦ {𝑥}) ⊆ 𝑅
14 cores 6224 . . . 4 (ran (𝑥dom (𝐹𝑅) ↦ {𝑥}) ⊆ 𝑅 → ((𝐹𝑅) ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥})) = (𝐹 ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥})))
1513, 14ax-mp 5 . . 3 ((𝐹𝑅) ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥})) = (𝐹 ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥}))
16 dftpos6 48851 . . . 4 tpos (𝐹𝑅) = (((𝐹𝑅) ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥})) ∪ ({∅} × ((𝐹𝑅) “ {∅})))
17 ressn 6260 . . . . . 6 ((𝐹𝑅) ↾ {∅}) = ({∅} × ((𝐹𝑅) “ {∅}))
18 resres 5965 . . . . . . 7 ((𝐹𝑅) ↾ {∅}) = (𝐹 ↾ (𝑅 ∩ {∅}))
19 relcnv 6077 . . . . . . . . . 10 Rel 𝑅
20 0nelrel0 5700 . . . . . . . . . 10 (Rel 𝑅 → ¬ ∅ ∈ 𝑅)
2119, 20ax-mp 5 . . . . . . . . 9 ¬ ∅ ∈ 𝑅
22 disjsn 4677 . . . . . . . . 9 ((𝑅 ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ 𝑅)
2321, 22mpbir 231 . . . . . . . 8 (𝑅 ∩ {∅}) = ∅
2423reseq2i 5949 . . . . . . 7 (𝐹 ↾ (𝑅 ∩ {∅})) = (𝐹 ↾ ∅)
25 res0 5956 . . . . . . 7 (𝐹 ↾ ∅) = ∅
2618, 24, 253eqtri 2757 . . . . . 6 ((𝐹𝑅) ↾ {∅}) = ∅
2717, 26eqtr3i 2755 . . . . 5 ({∅} × ((𝐹𝑅) “ {∅})) = ∅
2827uneq2i 4130 . . . 4 (((𝐹𝑅) ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥})) ∪ ({∅} × ((𝐹𝑅) “ {∅}))) = (((𝐹𝑅) ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥})) ∪ ∅)
29 un0 4359 . . . 4 (((𝐹𝑅) ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥})) ∪ ∅) = ((𝐹𝑅) ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥}))
3016, 28, 293eqtri 2757 . . 3 tpos (𝐹𝑅) = ((𝐹𝑅) ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥}))
31 tposrescnv 48855 . . 3 (tpos 𝐹𝑅) = (𝐹 ∘ (𝑥dom (𝐹𝑅) ↦ {𝑥}))
3215, 30, 313eqtr4ri 2764 . 2 (tpos 𝐹𝑅) = tpos (𝐹𝑅)
332, 32eqtrdi 2781 1 (𝜑 → (tpos 𝐹𝑅) = tpos (𝐹𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  cun 3914  cin 3915  wss 3916  c0 4298  {csn 4591   cuni 4873  cmpt 5190   × cxp 5638  ccnv 5639  dom cdm 5640  ran crn 5641  cres 5642  cima 5643  ccom 5644  Rel wrel 5645  ontowfo 6511  1-1-ontowf1o 6512  tpos ctpos 8206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-1st 7970  df-2nd 7971  df-tpos 8207
This theorem is referenced by:  tposres  48858
  Copyright terms: Public domain W3C validator