| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgr0e | Structured version Visualization version GIF version | ||
| Description: The empty graph, with vertices but no edges, is a hypergraph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 25-Nov-2020.) |
| Ref | Expression |
|---|---|
| uhgr0e.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| uhgr0e.e | ⊢ (𝜑 → (iEdg‘𝐺) = ∅) |
| Ref | Expression |
|---|---|
| uhgr0e | ⊢ (𝜑 → 𝐺 ∈ UHGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f0 6741 | . . 3 ⊢ ∅:∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) | |
| 2 | dm0 5884 | . . . 4 ⊢ dom ∅ = ∅ | |
| 3 | 2 | feq2i 6680 | . . 3 ⊢ (∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ ∅:∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
| 4 | 1, 3 | mpbir 231 | . 2 ⊢ ∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) |
| 5 | uhgr0e.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 6 | eqid 2729 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 7 | eqid 2729 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 8 | 6, 7 | isuhgr 28987 | . . . 4 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
| 9 | 5, 8 | syl 17 | . . 3 ⊢ (𝜑 → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
| 10 | uhgr0e.e | . . . 4 ⊢ (𝜑 → (iEdg‘𝐺) = ∅) | |
| 11 | id 22 | . . . . 5 ⊢ ((iEdg‘𝐺) = ∅ → (iEdg‘𝐺) = ∅) | |
| 12 | dmeq 5867 | . . . . 5 ⊢ ((iEdg‘𝐺) = ∅ → dom (iEdg‘𝐺) = dom ∅) | |
| 13 | 11, 12 | feq12d 6676 | . . . 4 ⊢ ((iEdg‘𝐺) = ∅ → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ ∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
| 14 | 10, 13 | syl 17 | . . 3 ⊢ (𝜑 → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ ∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
| 15 | 9, 14 | bitrd 279 | . 2 ⊢ (𝜑 → (𝐺 ∈ UHGraph ↔ ∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
| 16 | 4, 15 | mpbiri 258 | 1 ⊢ (𝜑 → 𝐺 ∈ UHGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∖ cdif 3911 ∅c0 4296 𝒫 cpw 4563 {csn 4589 dom cdm 5638 ⟶wf 6507 ‘cfv 6511 Vtxcvtx 28923 iEdgciedg 28924 UHGraphcuhgr 28983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-uhgr 28985 |
| This theorem is referenced by: uhgr0vb 28999 |
| Copyright terms: Public domain | W3C validator |