MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgr0e Structured version   Visualization version   GIF version

Theorem uhgr0e 29088
Description: The empty graph, with vertices but no edges, is a hypergraph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 25-Nov-2020.)
Hypotheses
Ref Expression
uhgr0e.g (𝜑𝐺𝑊)
uhgr0e.e (𝜑 → (iEdg‘𝐺) = ∅)
Assertion
Ref Expression
uhgr0e (𝜑𝐺 ∈ UHGraph)

Proof of Theorem uhgr0e
StepHypRef Expression
1 f0 6789 . . 3 ∅:∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅})
2 dm0 5931 . . . 4 dom ∅ = ∅
32feq2i 6728 . . 3 (∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ ∅:∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))
41, 3mpbir 231 . 2 ∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅})
5 uhgr0e.g . . . 4 (𝜑𝐺𝑊)
6 eqid 2737 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
7 eqid 2737 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
86, 7isuhgr 29077 . . . 4 (𝐺𝑊 → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅})))
95, 8syl 17 . . 3 (𝜑 → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅})))
10 uhgr0e.e . . . 4 (𝜑 → (iEdg‘𝐺) = ∅)
11 id 22 . . . . 5 ((iEdg‘𝐺) = ∅ → (iEdg‘𝐺) = ∅)
12 dmeq 5914 . . . . 5 ((iEdg‘𝐺) = ∅ → dom (iEdg‘𝐺) = dom ∅)
1311, 12feq12d 6724 . . . 4 ((iEdg‘𝐺) = ∅ → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ ∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅})))
1410, 13syl 17 . . 3 (𝜑 → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ ∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅})))
159, 14bitrd 279 . 2 (𝜑 → (𝐺 ∈ UHGraph ↔ ∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅})))
164, 15mpbiri 258 1 (𝜑𝐺 ∈ UHGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  cdif 3948  c0 4333  𝒫 cpw 4600  {csn 4626  dom cdm 5685  wf 6557  cfv 6561  Vtxcvtx 29013  iEdgciedg 29014  UHGraphcuhgr 29073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-uhgr 29075
This theorem is referenced by:  uhgr0vb  29089
  Copyright terms: Public domain W3C validator