| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgr0e | Structured version Visualization version GIF version | ||
| Description: The empty graph, with vertices but no edges, is a hypergraph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 25-Nov-2020.) |
| Ref | Expression |
|---|---|
| uhgr0e.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| uhgr0e.e | ⊢ (𝜑 → (iEdg‘𝐺) = ∅) |
| Ref | Expression |
|---|---|
| uhgr0e | ⊢ (𝜑 → 𝐺 ∈ UHGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f0 6764 | . . 3 ⊢ ∅:∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) | |
| 2 | dm0 5905 | . . . 4 ⊢ dom ∅ = ∅ | |
| 3 | 2 | feq2i 6703 | . . 3 ⊢ (∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ ∅:∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
| 4 | 1, 3 | mpbir 231 | . 2 ⊢ ∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) |
| 5 | uhgr0e.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 6 | eqid 2736 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 7 | eqid 2736 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 8 | 6, 7 | isuhgr 29044 | . . . 4 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
| 9 | 5, 8 | syl 17 | . . 3 ⊢ (𝜑 → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
| 10 | uhgr0e.e | . . . 4 ⊢ (𝜑 → (iEdg‘𝐺) = ∅) | |
| 11 | id 22 | . . . . 5 ⊢ ((iEdg‘𝐺) = ∅ → (iEdg‘𝐺) = ∅) | |
| 12 | dmeq 5888 | . . . . 5 ⊢ ((iEdg‘𝐺) = ∅ → dom (iEdg‘𝐺) = dom ∅) | |
| 13 | 11, 12 | feq12d 6699 | . . . 4 ⊢ ((iEdg‘𝐺) = ∅ → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ ∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
| 14 | 10, 13 | syl 17 | . . 3 ⊢ (𝜑 → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ ∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
| 15 | 9, 14 | bitrd 279 | . 2 ⊢ (𝜑 → (𝐺 ∈ UHGraph ↔ ∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
| 16 | 4, 15 | mpbiri 258 | 1 ⊢ (𝜑 → 𝐺 ∈ UHGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∖ cdif 3928 ∅c0 4313 𝒫 cpw 4580 {csn 4606 dom cdm 5659 ⟶wf 6532 ‘cfv 6536 Vtxcvtx 28980 iEdgciedg 28981 UHGraphcuhgr 29040 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-uhgr 29042 |
| This theorem is referenced by: uhgr0vb 29056 |
| Copyright terms: Public domain | W3C validator |