MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgr0e Structured version   Visualization version   GIF version

Theorem uhgr0e 29106
Description: The empty graph, with vertices but no edges, is a hypergraph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 25-Nov-2020.)
Hypotheses
Ref Expression
uhgr0e.g (𝜑𝐺𝑊)
uhgr0e.e (𝜑 → (iEdg‘𝐺) = ∅)
Assertion
Ref Expression
uhgr0e (𝜑𝐺 ∈ UHGraph)

Proof of Theorem uhgr0e
StepHypRef Expression
1 f0 6802 . . 3 ∅:∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅})
2 dm0 5945 . . . 4 dom ∅ = ∅
32feq2i 6739 . . 3 (∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ ∅:∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))
41, 3mpbir 231 . 2 ∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅})
5 uhgr0e.g . . . 4 (𝜑𝐺𝑊)
6 eqid 2740 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
7 eqid 2740 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
86, 7isuhgr 29095 . . . 4 (𝐺𝑊 → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅})))
95, 8syl 17 . . 3 (𝜑 → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅})))
10 uhgr0e.e . . . 4 (𝜑 → (iEdg‘𝐺) = ∅)
11 id 22 . . . . 5 ((iEdg‘𝐺) = ∅ → (iEdg‘𝐺) = ∅)
12 dmeq 5928 . . . . 5 ((iEdg‘𝐺) = ∅ → dom (iEdg‘𝐺) = dom ∅)
1311, 12feq12d 6735 . . . 4 ((iEdg‘𝐺) = ∅ → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ ∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅})))
1410, 13syl 17 . . 3 (𝜑 → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ ∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅})))
159, 14bitrd 279 . 2 (𝜑 → (𝐺 ∈ UHGraph ↔ ∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅})))
164, 15mpbiri 258 1 (𝜑𝐺 ∈ UHGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  cdif 3973  c0 4352  𝒫 cpw 4622  {csn 4648  dom cdm 5700  wf 6569  cfv 6573  Vtxcvtx 29031  iEdgciedg 29032  UHGraphcuhgr 29091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-uhgr 29093
This theorem is referenced by:  uhgr0vb  29107
  Copyright terms: Public domain W3C validator