MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgr0e Structured version   Visualization version   GIF version

Theorem uhgr0e 29055
Description: The empty graph, with vertices but no edges, is a hypergraph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 25-Nov-2020.)
Hypotheses
Ref Expression
uhgr0e.g (𝜑𝐺𝑊)
uhgr0e.e (𝜑 → (iEdg‘𝐺) = ∅)
Assertion
Ref Expression
uhgr0e (𝜑𝐺 ∈ UHGraph)

Proof of Theorem uhgr0e
StepHypRef Expression
1 f0 6764 . . 3 ∅:∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅})
2 dm0 5905 . . . 4 dom ∅ = ∅
32feq2i 6703 . . 3 (∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ ∅:∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))
41, 3mpbir 231 . 2 ∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅})
5 uhgr0e.g . . . 4 (𝜑𝐺𝑊)
6 eqid 2736 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
7 eqid 2736 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
86, 7isuhgr 29044 . . . 4 (𝐺𝑊 → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅})))
95, 8syl 17 . . 3 (𝜑 → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅})))
10 uhgr0e.e . . . 4 (𝜑 → (iEdg‘𝐺) = ∅)
11 id 22 . . . . 5 ((iEdg‘𝐺) = ∅ → (iEdg‘𝐺) = ∅)
12 dmeq 5888 . . . . 5 ((iEdg‘𝐺) = ∅ → dom (iEdg‘𝐺) = dom ∅)
1311, 12feq12d 6699 . . . 4 ((iEdg‘𝐺) = ∅ → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ ∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅})))
1410, 13syl 17 . . 3 (𝜑 → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ ∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅})))
159, 14bitrd 279 . 2 (𝜑 → (𝐺 ∈ UHGraph ↔ ∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅})))
164, 15mpbiri 258 1 (𝜑𝐺 ∈ UHGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  cdif 3928  c0 4313  𝒫 cpw 4580  {csn 4606  dom cdm 5659  wf 6532  cfv 6536  Vtxcvtx 28980  iEdgciedg 28981  UHGraphcuhgr 29040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-uhgr 29042
This theorem is referenced by:  uhgr0vb  29056
  Copyright terms: Public domain W3C validator