![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uhgr0e | Structured version Visualization version GIF version |
Description: The empty graph, with vertices but no edges, is a hypergraph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 25-Nov-2020.) |
Ref | Expression |
---|---|
uhgr0e.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
uhgr0e.e | ⊢ (𝜑 → (iEdg‘𝐺) = ∅) |
Ref | Expression |
---|---|
uhgr0e | ⊢ (𝜑 → 𝐺 ∈ UHGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f0 6790 | . . 3 ⊢ ∅:∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) | |
2 | dm0 5934 | . . . 4 ⊢ dom ∅ = ∅ | |
3 | 2 | feq2i 6729 | . . 3 ⊢ (∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ ∅:∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
4 | 1, 3 | mpbir 231 | . 2 ⊢ ∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) |
5 | uhgr0e.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
6 | eqid 2735 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
7 | eqid 2735 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
8 | 6, 7 | isuhgr 29092 | . . . 4 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
9 | 5, 8 | syl 17 | . . 3 ⊢ (𝜑 → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
10 | uhgr0e.e | . . . 4 ⊢ (𝜑 → (iEdg‘𝐺) = ∅) | |
11 | id 22 | . . . . 5 ⊢ ((iEdg‘𝐺) = ∅ → (iEdg‘𝐺) = ∅) | |
12 | dmeq 5917 | . . . . 5 ⊢ ((iEdg‘𝐺) = ∅ → dom (iEdg‘𝐺) = dom ∅) | |
13 | 11, 12 | feq12d 6725 | . . . 4 ⊢ ((iEdg‘𝐺) = ∅ → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ ∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
14 | 10, 13 | syl 17 | . . 3 ⊢ (𝜑 → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ ∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
15 | 9, 14 | bitrd 279 | . 2 ⊢ (𝜑 → (𝐺 ∈ UHGraph ↔ ∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
16 | 4, 15 | mpbiri 258 | 1 ⊢ (𝜑 → 𝐺 ∈ UHGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 ∖ cdif 3960 ∅c0 4339 𝒫 cpw 4605 {csn 4631 dom cdm 5689 ⟶wf 6559 ‘cfv 6563 Vtxcvtx 29028 iEdgciedg 29029 UHGraphcuhgr 29088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-uhgr 29090 |
This theorem is referenced by: uhgr0vb 29104 |
Copyright terms: Public domain | W3C validator |