MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2v2eiedg Structured version   Visualization version   GIF version

Theorem umgr2v2eiedg 29541
Description: The edge function in a multigraph with two edges connecting the same two vertices. (Contributed by AV, 17-Dec-2020.)
Hypothesis
Ref Expression
umgr2v2evtx.g 𝐺 = ⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩
Assertion
Ref Expression
umgr2v2eiedg ((𝑉𝑊𝐴𝑉𝐵𝑉) → (iEdg‘𝐺) = {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩})

Proof of Theorem umgr2v2eiedg
StepHypRef Expression
1 umgr2v2evtx.g . . 3 𝐺 = ⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩
21fveq2i 6909 . 2 (iEdg‘𝐺) = (iEdg‘⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩)
3 simp1 1137 . . 3 ((𝑉𝑊𝐴𝑉𝐵𝑉) → 𝑉𝑊)
4 prex 5437 . . 3 {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩} ∈ V
5 opiedgfv 29024 . . 3 ((𝑉𝑊 ∧ {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩} ∈ V) → (iEdg‘⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩) = {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩})
63, 4, 5sylancl 586 . 2 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (iEdg‘⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩) = {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩})
72, 6eqtrid 2789 1 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (iEdg‘𝐺) = {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1540  wcel 2108  Vcvv 3480  {cpr 4628  cop 4632  cfv 6561  0cc0 11155  1c1 11156  iEdgciedg 29014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-iota 6514  df-fun 6563  df-fv 6569  df-2nd 8015  df-iedg 29016
This theorem is referenced by:  umgr2v2eedg  29542  umgr2v2e  29543  umgr2v2evd2  29545
  Copyright terms: Public domain W3C validator