MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2v2eiedg Structured version   Visualization version   GIF version

Theorem umgr2v2eiedg 27232
Description: The edge function in a multigraph with two edges connecting the same two vertices. (Contributed by AV, 17-Dec-2020.)
Hypothesis
Ref Expression
umgr2v2evtx.g 𝐺 = ⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩
Assertion
Ref Expression
umgr2v2eiedg ((𝑉𝑊𝐴𝑉𝐵𝑉) → (iEdg‘𝐺) = {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩})

Proof of Theorem umgr2v2eiedg
StepHypRef Expression
1 umgr2v2evtx.g . . 3 𝐺 = ⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩
21fveq2i 6666 . 2 (iEdg‘𝐺) = (iEdg‘⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩)
3 simp1 1128 . . 3 ((𝑉𝑊𝐴𝑉𝐵𝑉) → 𝑉𝑊)
4 prex 5323 . . 3 {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩} ∈ V
5 opiedgfv 26719 . . 3 ((𝑉𝑊 ∧ {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩} ∈ V) → (iEdg‘⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩) = {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩})
63, 4, 5sylancl 586 . 2 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (iEdg‘⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩) = {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩})
72, 6syl5eq 2865 1 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (iEdg‘𝐺) = {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1079   = wceq 1528  wcel 2105  Vcvv 3492  {cpr 4559  cop 4563  cfv 6348  0cc0 10525  1c1 10526  iEdgciedg 26709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-iota 6307  df-fun 6350  df-fv 6356  df-2nd 7679  df-iedg 26711
This theorem is referenced by:  umgr2v2eedg  27233  umgr2v2e  27234  umgr2v2evd2  27236
  Copyright terms: Public domain W3C validator