Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > umgr2v2eiedg | Structured version Visualization version GIF version |
Description: The edge function in a multigraph with two edges connecting the same two vertices. (Contributed by AV, 17-Dec-2020.) |
Ref | Expression |
---|---|
umgr2v2evtx.g | ⊢ 𝐺 = 〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉 |
Ref | Expression |
---|---|
umgr2v2eiedg | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (iEdg‘𝐺) = {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | umgr2v2evtx.g | . . 3 ⊢ 𝐺 = 〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉 | |
2 | 1 | fveq2i 6759 | . 2 ⊢ (iEdg‘𝐺) = (iEdg‘〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉) |
3 | simp1 1134 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝑉 ∈ 𝑊) | |
4 | prex 5350 | . . 3 ⊢ {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉} ∈ V | |
5 | opiedgfv 27280 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉} ∈ V) → (iEdg‘〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉) = {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}) | |
6 | 3, 4, 5 | sylancl 585 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (iEdg‘〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉) = {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}) |
7 | 2, 6 | syl5eq 2791 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (iEdg‘𝐺) = {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 Vcvv 3422 {cpr 4560 〈cop 4564 ‘cfv 6418 0cc0 10802 1c1 10803 iEdgciedg 27270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fv 6426 df-2nd 7805 df-iedg 27272 |
This theorem is referenced by: umgr2v2eedg 27794 umgr2v2e 27795 umgr2v2evd2 27797 |
Copyright terms: Public domain | W3C validator |