MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2v2eiedg Structured version   Visualization version   GIF version

Theorem umgr2v2eiedg 27890
Description: The edge function in a multigraph with two edges connecting the same two vertices. (Contributed by AV, 17-Dec-2020.)
Hypothesis
Ref Expression
umgr2v2evtx.g 𝐺 = ⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩
Assertion
Ref Expression
umgr2v2eiedg ((𝑉𝑊𝐴𝑉𝐵𝑉) → (iEdg‘𝐺) = {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩})

Proof of Theorem umgr2v2eiedg
StepHypRef Expression
1 umgr2v2evtx.g . . 3 𝐺 = ⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩
21fveq2i 6777 . 2 (iEdg‘𝐺) = (iEdg‘⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩)
3 simp1 1135 . . 3 ((𝑉𝑊𝐴𝑉𝐵𝑉) → 𝑉𝑊)
4 prex 5355 . . 3 {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩} ∈ V
5 opiedgfv 27377 . . 3 ((𝑉𝑊 ∧ {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩} ∈ V) → (iEdg‘⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩) = {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩})
63, 4, 5sylancl 586 . 2 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (iEdg‘⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩) = {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩})
72, 6eqtrid 2790 1 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (iEdg‘𝐺) = {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  {cpr 4563  cop 4567  cfv 6433  0cc0 10871  1c1 10872  iEdgciedg 27367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fv 6441  df-2nd 7832  df-iedg 27369
This theorem is referenced by:  umgr2v2eedg  27891  umgr2v2e  27892  umgr2v2evd2  27894
  Copyright terms: Public domain W3C validator