| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > umgr2v2eiedg | Structured version Visualization version GIF version | ||
| Description: The edge function in a multigraph with two edges connecting the same two vertices. (Contributed by AV, 17-Dec-2020.) |
| Ref | Expression |
|---|---|
| umgr2v2evtx.g | ⊢ 𝐺 = 〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉 |
| Ref | Expression |
|---|---|
| umgr2v2eiedg | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (iEdg‘𝐺) = {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgr2v2evtx.g | . . 3 ⊢ 𝐺 = 〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉 | |
| 2 | 1 | fveq2i 6825 | . 2 ⊢ (iEdg‘𝐺) = (iEdg‘〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉) |
| 3 | simp1 1136 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝑉 ∈ 𝑊) | |
| 4 | prex 5375 | . . 3 ⊢ {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉} ∈ V | |
| 5 | opiedgfv 28983 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉} ∈ V) → (iEdg‘〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉) = {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}) | |
| 6 | 3, 4, 5 | sylancl 586 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (iEdg‘〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉) = {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}) |
| 7 | 2, 6 | eqtrid 2778 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (iEdg‘𝐺) = {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {cpr 4578 〈cop 4582 ‘cfv 6481 0cc0 11003 1c1 11004 iEdgciedg 28973 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-2nd 7922 df-iedg 28975 |
| This theorem is referenced by: umgr2v2eedg 29501 umgr2v2e 29502 umgr2v2evd2 29504 |
| Copyright terms: Public domain | W3C validator |