Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexp01min Structured version   Visualization version   GIF version

Theorem relexp01min 41210
Description: With exponents limited to 0 and 1, the composition of powers of a relation is the relation raised to the minimum of exponents. (Contributed by RP, 12-Jun-2020.)
Assertion
Ref Expression
relexp01min (((𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) ∧ (𝐽 ∈ {0, 1} ∧ 𝐾 ∈ {0, 1})) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))

Proof of Theorem relexp01min
StepHypRef Expression
1 elpri 4580 . . 3 (𝐽 ∈ {0, 1} → (𝐽 = 0 ∨ 𝐽 = 1))
2 elpri 4580 . . 3 (𝐾 ∈ {0, 1} → (𝐾 = 0 ∨ 𝐾 = 1))
3 dmresi 5950 . . . . . . . . . . 11 dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅)
4 rnresi 5972 . . . . . . . . . . 11 ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅)
53, 4uneq12i 4091 . . . . . . . . . 10 (dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∪ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = ((dom 𝑅 ∪ ran 𝑅) ∪ (dom 𝑅 ∪ ran 𝑅))
6 unidm 4082 . . . . . . . . . 10 ((dom 𝑅 ∪ ran 𝑅) ∪ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅)
75, 6eqtri 2766 . . . . . . . . 9 (dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∪ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (dom 𝑅 ∪ ran 𝑅)
87reseq2i 5877 . . . . . . . 8 ( I ↾ (dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∪ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)))) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))
9 simp1 1134 . . . . . . . . . . . 12 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐽 = 0)
109oveq2d 7271 . . . . . . . . . . 11 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟𝐽) = (𝑅𝑟0))
11 simp3l 1199 . . . . . . . . . . . 12 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝑅𝑉)
12 relexp0g 14661 . . . . . . . . . . . 12 (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
1311, 12syl 17 . . . . . . . . . . 11 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
1410, 13eqtrd 2778 . . . . . . . . . 10 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟𝐽) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
15 simp2 1135 . . . . . . . . . 10 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐾 = 0)
1614, 15oveq12d 7273 . . . . . . . . 9 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (( I ↾ (dom 𝑅 ∪ ran 𝑅))↑𝑟0))
17 dmexg 7724 . . . . . . . . . . . 12 (𝑅𝑉 → dom 𝑅 ∈ V)
18 rnexg 7725 . . . . . . . . . . . 12 (𝑅𝑉 → ran 𝑅 ∈ V)
19 unexg 7577 . . . . . . . . . . . 12 ((dom 𝑅 ∈ V ∧ ran 𝑅 ∈ V) → (dom 𝑅 ∪ ran 𝑅) ∈ V)
2017, 18, 19syl2anc 583 . . . . . . . . . . 11 (𝑅𝑉 → (dom 𝑅 ∪ ran 𝑅) ∈ V)
2120resiexd 7074 . . . . . . . . . 10 (𝑅𝑉 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∈ V)
22 relexp0g 14661 . . . . . . . . . 10 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∈ V → (( I ↾ (dom 𝑅 ∪ ran 𝑅))↑𝑟0) = ( I ↾ (dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∪ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)))))
2311, 21, 223syl 18 . . . . . . . . 9 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (( I ↾ (dom 𝑅 ∪ ran 𝑅))↑𝑟0) = ( I ↾ (dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∪ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)))))
2416, 23eqtrd 2778 . . . . . . . 8 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ((𝑅𝑟𝐽)↑𝑟𝐾) = ( I ↾ (dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∪ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)))))
25 simp3r 1200 . . . . . . . . . . 11 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))
26 0re 10908 . . . . . . . . . . . . . 14 0 ∈ ℝ
2726ltnri 11014 . . . . . . . . . . . . 13 ¬ 0 < 0
289, 15breq12d 5083 . . . . . . . . . . . . 13 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝐽 < 𝐾 ↔ 0 < 0))
2927, 28mtbiri 326 . . . . . . . . . . . 12 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ¬ 𝐽 < 𝐾)
3029iffalsed 4467 . . . . . . . . . . 11 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)
3125, 30, 153eqtrd 2782 . . . . . . . . . 10 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐼 = 0)
3231oveq2d 7271 . . . . . . . . 9 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟𝐼) = (𝑅𝑟0))
3332, 13eqtrd 2778 . . . . . . . 8 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟𝐼) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
348, 24, 333eqtr4a 2805 . . . . . . 7 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))
35343exp 1117 . . . . . 6 (𝐽 = 0 → (𝐾 = 0 → ((𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
36 simp1 1134 . . . . . . . . . . 11 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐽 = 1)
3736oveq2d 7271 . . . . . . . . . 10 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟𝐽) = (𝑅𝑟1))
38 simp3l 1199 . . . . . . . . . . 11 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝑅𝑉)
39 relexp1g 14665 . . . . . . . . . . 11 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
4038, 39syl 17 . . . . . . . . . 10 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟1) = 𝑅)
4137, 40eqtrd 2778 . . . . . . . . 9 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟𝐽) = 𝑅)
42 simp2 1135 . . . . . . . . 9 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐾 = 0)
4341, 42oveq12d 7273 . . . . . . . 8 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟0))
44 simp3r 1200 . . . . . . . . . 10 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))
45 0lt1 11427 . . . . . . . . . . . . 13 0 < 1
46 1re 10906 . . . . . . . . . . . . . 14 1 ∈ ℝ
4726, 46ltnsymi 11024 . . . . . . . . . . . . 13 (0 < 1 → ¬ 1 < 0)
4845, 47mp1i 13 . . . . . . . . . . . 12 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ¬ 1 < 0)
4936, 42breq12d 5083 . . . . . . . . . . . 12 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝐽 < 𝐾 ↔ 1 < 0))
5048, 49mtbird 324 . . . . . . . . . . 11 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ¬ 𝐽 < 𝐾)
5150iffalsed 4467 . . . . . . . . . 10 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)
5244, 51, 423eqtrd 2782 . . . . . . . . 9 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐼 = 0)
5352oveq2d 7271 . . . . . . . 8 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟𝐼) = (𝑅𝑟0))
5443, 53eqtr4d 2781 . . . . . . 7 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))
55543exp 1117 . . . . . 6 (𝐽 = 1 → (𝐾 = 0 → ((𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
5635, 55jaoi 853 . . . . 5 ((𝐽 = 0 ∨ 𝐽 = 1) → (𝐾 = 0 → ((𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
57 ovex 7288 . . . . . . . . 9 (𝑅𝑟0) ∈ V
58 relexp1g 14665 . . . . . . . . 9 ((𝑅𝑟0) ∈ V → ((𝑅𝑟0)↑𝑟1) = (𝑅𝑟0))
5957, 58mp1i 13 . . . . . . . 8 ((𝐽 = 0 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ((𝑅𝑟0)↑𝑟1) = (𝑅𝑟0))
60 simp1 1134 . . . . . . . . . 10 ((𝐽 = 0 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐽 = 0)
6160oveq2d 7271 . . . . . . . . 9 ((𝐽 = 0 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟𝐽) = (𝑅𝑟0))
62 simp2 1135 . . . . . . . . 9 ((𝐽 = 0 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐾 = 1)
6361, 62oveq12d 7273 . . . . . . . 8 ((𝐽 = 0 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ((𝑅𝑟𝐽)↑𝑟𝐾) = ((𝑅𝑟0)↑𝑟1))
64 simp3r 1200 . . . . . . . . . 10 ((𝐽 = 0 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))
6560, 62breq12d 5083 . . . . . . . . . . . 12 ((𝐽 = 0 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝐽 < 𝐾 ↔ 0 < 1))
6645, 65mpbiri 257 . . . . . . . . . . 11 ((𝐽 = 0 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐽 < 𝐾)
6766iftrued 4464 . . . . . . . . . 10 ((𝐽 = 0 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽)
6864, 67, 603eqtrd 2782 . . . . . . . . 9 ((𝐽 = 0 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐼 = 0)
6968oveq2d 7271 . . . . . . . 8 ((𝐽 = 0 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟𝐼) = (𝑅𝑟0))
7059, 63, 693eqtr4d 2788 . . . . . . 7 ((𝐽 = 0 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))
71703exp 1117 . . . . . 6 (𝐽 = 0 → (𝐾 = 1 → ((𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
72 simp1 1134 . . . . . . . . . . 11 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐽 = 1)
7372oveq2d 7271 . . . . . . . . . 10 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟𝐽) = (𝑅𝑟1))
74 simp3l 1199 . . . . . . . . . . 11 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝑅𝑉)
7574, 39syl 17 . . . . . . . . . 10 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟1) = 𝑅)
7673, 75eqtrd 2778 . . . . . . . . 9 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟𝐽) = 𝑅)
77 simp2 1135 . . . . . . . . 9 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐾 = 1)
7876, 77oveq12d 7273 . . . . . . . 8 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟1))
79 simp3r 1200 . . . . . . . . . 10 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))
8046ltnri 11014 . . . . . . . . . . . 12 ¬ 1 < 1
8172, 77breq12d 5083 . . . . . . . . . . . 12 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝐽 < 𝐾 ↔ 1 < 1))
8280, 81mtbiri 326 . . . . . . . . . . 11 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ¬ 𝐽 < 𝐾)
8382iffalsed 4467 . . . . . . . . . 10 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)
8479, 83, 773eqtrd 2782 . . . . . . . . 9 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐼 = 1)
8584oveq2d 7271 . . . . . . . 8 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟𝐼) = (𝑅𝑟1))
8678, 85eqtr4d 2781 . . . . . . 7 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))
87863exp 1117 . . . . . 6 (𝐽 = 1 → (𝐾 = 1 → ((𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
8871, 87jaoi 853 . . . . 5 ((𝐽 = 0 ∨ 𝐽 = 1) → (𝐾 = 1 → ((𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
8956, 88jaod 855 . . . 4 ((𝐽 = 0 ∨ 𝐽 = 1) → ((𝐾 = 0 ∨ 𝐾 = 1) → ((𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
9089imp 406 . . 3 (((𝐽 = 0 ∨ 𝐽 = 1) ∧ (𝐾 = 0 ∨ 𝐾 = 1)) → ((𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼)))
911, 2, 90syl2an 595 . 2 ((𝐽 ∈ {0, 1} ∧ 𝐾 ∈ {0, 1}) → ((𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼)))
9291impcom 407 1 (((𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) ∧ (𝐽 ∈ {0, 1} ∧ 𝐾 ∈ {0, 1})) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  cun 3881  ifcif 4456  {cpr 4560   class class class wbr 5070   I cid 5479  dom cdm 5580  ran crn 5581  cres 5582  (class class class)co 7255  0cc0 10802  1c1 10803   < clt 10940  𝑟crelexp 14658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-seq 13650  df-relexp 14659
This theorem is referenced by:  relexp1idm  41211  relexp0idm  41212
  Copyright terms: Public domain W3C validator