Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexp01min Structured version   Visualization version   GIF version

Theorem relexp01min 40998
Description: With exponents limited to 0 and 1, the composition of powers of a relation is the relation raised to the minimum of exponents. (Contributed by RP, 12-Jun-2020.)
Assertion
Ref Expression
relexp01min (((𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) ∧ (𝐽 ∈ {0, 1} ∧ 𝐾 ∈ {0, 1})) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))

Proof of Theorem relexp01min
StepHypRef Expression
1 elpri 4563 . . 3 (𝐽 ∈ {0, 1} → (𝐽 = 0 ∨ 𝐽 = 1))
2 elpri 4563 . . 3 (𝐾 ∈ {0, 1} → (𝐾 = 0 ∨ 𝐾 = 1))
3 dmresi 5921 . . . . . . . . . . 11 dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅)
4 rnresi 5943 . . . . . . . . . . 11 ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅)
53, 4uneq12i 4075 . . . . . . . . . 10 (dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∪ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = ((dom 𝑅 ∪ ran 𝑅) ∪ (dom 𝑅 ∪ ran 𝑅))
6 unidm 4066 . . . . . . . . . 10 ((dom 𝑅 ∪ ran 𝑅) ∪ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅)
75, 6eqtri 2765 . . . . . . . . 9 (dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∪ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (dom 𝑅 ∪ ran 𝑅)
87reseq2i 5848 . . . . . . . 8 ( I ↾ (dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∪ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)))) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))
9 simp1 1138 . . . . . . . . . . . 12 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐽 = 0)
109oveq2d 7229 . . . . . . . . . . 11 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟𝐽) = (𝑅𝑟0))
11 simp3l 1203 . . . . . . . . . . . 12 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝑅𝑉)
12 relexp0g 14585 . . . . . . . . . . . 12 (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
1311, 12syl 17 . . . . . . . . . . 11 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
1410, 13eqtrd 2777 . . . . . . . . . 10 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟𝐽) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
15 simp2 1139 . . . . . . . . . 10 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐾 = 0)
1614, 15oveq12d 7231 . . . . . . . . 9 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (( I ↾ (dom 𝑅 ∪ ran 𝑅))↑𝑟0))
17 dmexg 7681 . . . . . . . . . . . 12 (𝑅𝑉 → dom 𝑅 ∈ V)
18 rnexg 7682 . . . . . . . . . . . 12 (𝑅𝑉 → ran 𝑅 ∈ V)
19 unexg 7534 . . . . . . . . . . . 12 ((dom 𝑅 ∈ V ∧ ran 𝑅 ∈ V) → (dom 𝑅 ∪ ran 𝑅) ∈ V)
2017, 18, 19syl2anc 587 . . . . . . . . . . 11 (𝑅𝑉 → (dom 𝑅 ∪ ran 𝑅) ∈ V)
2120resiexd 7032 . . . . . . . . . 10 (𝑅𝑉 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∈ V)
22 relexp0g 14585 . . . . . . . . . 10 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∈ V → (( I ↾ (dom 𝑅 ∪ ran 𝑅))↑𝑟0) = ( I ↾ (dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∪ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)))))
2311, 21, 223syl 18 . . . . . . . . 9 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (( I ↾ (dom 𝑅 ∪ ran 𝑅))↑𝑟0) = ( I ↾ (dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∪ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)))))
2416, 23eqtrd 2777 . . . . . . . 8 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ((𝑅𝑟𝐽)↑𝑟𝐾) = ( I ↾ (dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∪ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)))))
25 simp3r 1204 . . . . . . . . . . 11 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))
26 0re 10835 . . . . . . . . . . . . . 14 0 ∈ ℝ
2726ltnri 10941 . . . . . . . . . . . . 13 ¬ 0 < 0
289, 15breq12d 5066 . . . . . . . . . . . . 13 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝐽 < 𝐾 ↔ 0 < 0))
2927, 28mtbiri 330 . . . . . . . . . . . 12 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ¬ 𝐽 < 𝐾)
3029iffalsed 4450 . . . . . . . . . . 11 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)
3125, 30, 153eqtrd 2781 . . . . . . . . . 10 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐼 = 0)
3231oveq2d 7229 . . . . . . . . 9 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟𝐼) = (𝑅𝑟0))
3332, 13eqtrd 2777 . . . . . . . 8 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟𝐼) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
348, 24, 333eqtr4a 2804 . . . . . . 7 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))
35343exp 1121 . . . . . 6 (𝐽 = 0 → (𝐾 = 0 → ((𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
36 simp1 1138 . . . . . . . . . . 11 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐽 = 1)
3736oveq2d 7229 . . . . . . . . . 10 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟𝐽) = (𝑅𝑟1))
38 simp3l 1203 . . . . . . . . . . 11 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝑅𝑉)
39 relexp1g 14589 . . . . . . . . . . 11 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
4038, 39syl 17 . . . . . . . . . 10 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟1) = 𝑅)
4137, 40eqtrd 2777 . . . . . . . . 9 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟𝐽) = 𝑅)
42 simp2 1139 . . . . . . . . 9 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐾 = 0)
4341, 42oveq12d 7231 . . . . . . . 8 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟0))
44 simp3r 1204 . . . . . . . . . 10 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))
45 0lt1 11354 . . . . . . . . . . . . 13 0 < 1
46 1re 10833 . . . . . . . . . . . . . 14 1 ∈ ℝ
4726, 46ltnsymi 10951 . . . . . . . . . . . . 13 (0 < 1 → ¬ 1 < 0)
4845, 47mp1i 13 . . . . . . . . . . . 12 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ¬ 1 < 0)
4936, 42breq12d 5066 . . . . . . . . . . . 12 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝐽 < 𝐾 ↔ 1 < 0))
5048, 49mtbird 328 . . . . . . . . . . 11 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ¬ 𝐽 < 𝐾)
5150iffalsed 4450 . . . . . . . . . 10 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)
5244, 51, 423eqtrd 2781 . . . . . . . . 9 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐼 = 0)
5352oveq2d 7229 . . . . . . . 8 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟𝐼) = (𝑅𝑟0))
5443, 53eqtr4d 2780 . . . . . . 7 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))
55543exp 1121 . . . . . 6 (𝐽 = 1 → (𝐾 = 0 → ((𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
5635, 55jaoi 857 . . . . 5 ((𝐽 = 0 ∨ 𝐽 = 1) → (𝐾 = 0 → ((𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
57 ovex 7246 . . . . . . . . 9 (𝑅𝑟0) ∈ V
58 relexp1g 14589 . . . . . . . . 9 ((𝑅𝑟0) ∈ V → ((𝑅𝑟0)↑𝑟1) = (𝑅𝑟0))
5957, 58mp1i 13 . . . . . . . 8 ((𝐽 = 0 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ((𝑅𝑟0)↑𝑟1) = (𝑅𝑟0))
60 simp1 1138 . . . . . . . . . 10 ((𝐽 = 0 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐽 = 0)
6160oveq2d 7229 . . . . . . . . 9 ((𝐽 = 0 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟𝐽) = (𝑅𝑟0))
62 simp2 1139 . . . . . . . . 9 ((𝐽 = 0 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐾 = 1)
6361, 62oveq12d 7231 . . . . . . . 8 ((𝐽 = 0 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ((𝑅𝑟𝐽)↑𝑟𝐾) = ((𝑅𝑟0)↑𝑟1))
64 simp3r 1204 . . . . . . . . . 10 ((𝐽 = 0 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))
6560, 62breq12d 5066 . . . . . . . . . . . 12 ((𝐽 = 0 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝐽 < 𝐾 ↔ 0 < 1))
6645, 65mpbiri 261 . . . . . . . . . . 11 ((𝐽 = 0 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐽 < 𝐾)
6766iftrued 4447 . . . . . . . . . 10 ((𝐽 = 0 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽)
6864, 67, 603eqtrd 2781 . . . . . . . . 9 ((𝐽 = 0 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐼 = 0)
6968oveq2d 7229 . . . . . . . 8 ((𝐽 = 0 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟𝐼) = (𝑅𝑟0))
7059, 63, 693eqtr4d 2787 . . . . . . 7 ((𝐽 = 0 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))
71703exp 1121 . . . . . 6 (𝐽 = 0 → (𝐾 = 1 → ((𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
72 simp1 1138 . . . . . . . . . . 11 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐽 = 1)
7372oveq2d 7229 . . . . . . . . . 10 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟𝐽) = (𝑅𝑟1))
74 simp3l 1203 . . . . . . . . . . 11 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝑅𝑉)
7574, 39syl 17 . . . . . . . . . 10 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟1) = 𝑅)
7673, 75eqtrd 2777 . . . . . . . . 9 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟𝐽) = 𝑅)
77 simp2 1139 . . . . . . . . 9 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐾 = 1)
7876, 77oveq12d 7231 . . . . . . . 8 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟1))
79 simp3r 1204 . . . . . . . . . 10 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))
8046ltnri 10941 . . . . . . . . . . . 12 ¬ 1 < 1
8172, 77breq12d 5066 . . . . . . . . . . . 12 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝐽 < 𝐾 ↔ 1 < 1))
8280, 81mtbiri 330 . . . . . . . . . . 11 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ¬ 𝐽 < 𝐾)
8382iffalsed 4450 . . . . . . . . . 10 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)
8479, 83, 773eqtrd 2781 . . . . . . . . 9 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐼 = 1)
8584oveq2d 7229 . . . . . . . 8 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟𝐼) = (𝑅𝑟1))
8678, 85eqtr4d 2780 . . . . . . 7 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))
87863exp 1121 . . . . . 6 (𝐽 = 1 → (𝐾 = 1 → ((𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
8871, 87jaoi 857 . . . . 5 ((𝐽 = 0 ∨ 𝐽 = 1) → (𝐾 = 1 → ((𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
8956, 88jaod 859 . . . 4 ((𝐽 = 0 ∨ 𝐽 = 1) → ((𝐾 = 0 ∨ 𝐾 = 1) → ((𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
9089imp 410 . . 3 (((𝐽 = 0 ∨ 𝐽 = 1) ∧ (𝐾 = 0 ∨ 𝐾 = 1)) → ((𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼)))
911, 2, 90syl2an 599 . 2 ((𝐽 ∈ {0, 1} ∧ 𝐾 ∈ {0, 1}) → ((𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼)))
9291impcom 411 1 (((𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) ∧ (𝐽 ∈ {0, 1} ∧ 𝐾 ∈ {0, 1})) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 847  w3a 1089   = wceq 1543  wcel 2110  Vcvv 3408  cun 3864  ifcif 4439  {cpr 4543   class class class wbr 5053   I cid 5454  dom cdm 5551  ran crn 5552  cres 5553  (class class class)co 7213  0cc0 10729  1c1 10730   < clt 10867  𝑟crelexp 14582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-n0 12091  df-z 12177  df-uz 12439  df-seq 13575  df-relexp 14583
This theorem is referenced by:  relexp1idm  40999  relexp0idm  41000
  Copyright terms: Public domain W3C validator