Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexp01min Structured version   Visualization version   GIF version

Theorem relexp01min 43702
Description: With exponents limited to 0 and 1, the composition of powers of a relation is the relation raised to the minimum of exponents. (Contributed by RP, 12-Jun-2020.)
Assertion
Ref Expression
relexp01min (((𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) ∧ (𝐽 ∈ {0, 1} ∧ 𝐾 ∈ {0, 1})) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))

Proof of Theorem relexp01min
StepHypRef Expression
1 elpri 4653 . . 3 (𝐽 ∈ {0, 1} → (𝐽 = 0 ∨ 𝐽 = 1))
2 elpri 4653 . . 3 (𝐾 ∈ {0, 1} → (𝐾 = 0 ∨ 𝐾 = 1))
3 dmresi 6071 . . . . . . . . . . 11 dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅)
4 rnresi 6094 . . . . . . . . . . 11 ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅)
53, 4uneq12i 4175 . . . . . . . . . 10 (dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∪ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = ((dom 𝑅 ∪ ran 𝑅) ∪ (dom 𝑅 ∪ ran 𝑅))
6 unidm 4166 . . . . . . . . . 10 ((dom 𝑅 ∪ ran 𝑅) ∪ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅)
75, 6eqtri 2762 . . . . . . . . 9 (dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∪ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (dom 𝑅 ∪ ran 𝑅)
87reseq2i 5996 . . . . . . . 8 ( I ↾ (dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∪ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)))) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))
9 simp1 1135 . . . . . . . . . . . 12 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐽 = 0)
109oveq2d 7446 . . . . . . . . . . 11 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟𝐽) = (𝑅𝑟0))
11 simp3l 1200 . . . . . . . . . . . 12 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝑅𝑉)
12 relexp0g 15057 . . . . . . . . . . . 12 (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
1311, 12syl 17 . . . . . . . . . . 11 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
1410, 13eqtrd 2774 . . . . . . . . . 10 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟𝐽) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
15 simp2 1136 . . . . . . . . . 10 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐾 = 0)
1614, 15oveq12d 7448 . . . . . . . . 9 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (( I ↾ (dom 𝑅 ∪ ran 𝑅))↑𝑟0))
17 dmexg 7923 . . . . . . . . . . . 12 (𝑅𝑉 → dom 𝑅 ∈ V)
18 rnexg 7924 . . . . . . . . . . . 12 (𝑅𝑉 → ran 𝑅 ∈ V)
1917, 18unexd 7772 . . . . . . . . . . 11 (𝑅𝑉 → (dom 𝑅 ∪ ran 𝑅) ∈ V)
2019resiexd 7235 . . . . . . . . . 10 (𝑅𝑉 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∈ V)
21 relexp0g 15057 . . . . . . . . . 10 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∈ V → (( I ↾ (dom 𝑅 ∪ ran 𝑅))↑𝑟0) = ( I ↾ (dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∪ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)))))
2211, 20, 213syl 18 . . . . . . . . 9 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (( I ↾ (dom 𝑅 ∪ ran 𝑅))↑𝑟0) = ( I ↾ (dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∪ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)))))
2316, 22eqtrd 2774 . . . . . . . 8 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ((𝑅𝑟𝐽)↑𝑟𝐾) = ( I ↾ (dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∪ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)))))
24 simp3r 1201 . . . . . . . . . . 11 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))
25 0re 11260 . . . . . . . . . . . . . 14 0 ∈ ℝ
2625ltnri 11367 . . . . . . . . . . . . 13 ¬ 0 < 0
279, 15breq12d 5160 . . . . . . . . . . . . 13 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝐽 < 𝐾 ↔ 0 < 0))
2826, 27mtbiri 327 . . . . . . . . . . . 12 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ¬ 𝐽 < 𝐾)
2928iffalsed 4541 . . . . . . . . . . 11 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)
3024, 29, 153eqtrd 2778 . . . . . . . . . 10 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐼 = 0)
3130oveq2d 7446 . . . . . . . . 9 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟𝐼) = (𝑅𝑟0))
3231, 13eqtrd 2774 . . . . . . . 8 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟𝐼) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
338, 23, 323eqtr4a 2800 . . . . . . 7 ((𝐽 = 0 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))
34333exp 1118 . . . . . 6 (𝐽 = 0 → (𝐾 = 0 → ((𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
35 simp1 1135 . . . . . . . . . . 11 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐽 = 1)
3635oveq2d 7446 . . . . . . . . . 10 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟𝐽) = (𝑅𝑟1))
37 simp3l 1200 . . . . . . . . . . 11 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝑅𝑉)
3837relexp1d 15064 . . . . . . . . . 10 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟1) = 𝑅)
3936, 38eqtrd 2774 . . . . . . . . 9 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟𝐽) = 𝑅)
40 simp2 1136 . . . . . . . . 9 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐾 = 0)
4139, 40oveq12d 7448 . . . . . . . 8 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟0))
42 simp3r 1201 . . . . . . . . . 10 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))
43 0lt1 11782 . . . . . . . . . . . . 13 0 < 1
44 1re 11258 . . . . . . . . . . . . . 14 1 ∈ ℝ
4525, 44ltnsymi 11377 . . . . . . . . . . . . 13 (0 < 1 → ¬ 1 < 0)
4643, 45mp1i 13 . . . . . . . . . . . 12 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ¬ 1 < 0)
4735, 40breq12d 5160 . . . . . . . . . . . 12 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝐽 < 𝐾 ↔ 1 < 0))
4846, 47mtbird 325 . . . . . . . . . . 11 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ¬ 𝐽 < 𝐾)
4948iffalsed 4541 . . . . . . . . . 10 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)
5042, 49, 403eqtrd 2778 . . . . . . . . 9 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐼 = 0)
5150oveq2d 7446 . . . . . . . 8 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟𝐼) = (𝑅𝑟0))
5241, 51eqtr4d 2777 . . . . . . 7 ((𝐽 = 1 ∧ 𝐾 = 0 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))
53523exp 1118 . . . . . 6 (𝐽 = 1 → (𝐾 = 0 → ((𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
5434, 53jaoi 857 . . . . 5 ((𝐽 = 0 ∨ 𝐽 = 1) → (𝐾 = 0 → ((𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
55 ovex 7463 . . . . . . . . 9 (𝑅𝑟0) ∈ V
56 relexp1g 15061 . . . . . . . . 9 ((𝑅𝑟0) ∈ V → ((𝑅𝑟0)↑𝑟1) = (𝑅𝑟0))
5755, 56mp1i 13 . . . . . . . 8 ((𝐽 = 0 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ((𝑅𝑟0)↑𝑟1) = (𝑅𝑟0))
58 simp1 1135 . . . . . . . . . 10 ((𝐽 = 0 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐽 = 0)
5958oveq2d 7446 . . . . . . . . 9 ((𝐽 = 0 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟𝐽) = (𝑅𝑟0))
60 simp2 1136 . . . . . . . . 9 ((𝐽 = 0 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐾 = 1)
6159, 60oveq12d 7448 . . . . . . . 8 ((𝐽 = 0 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ((𝑅𝑟𝐽)↑𝑟𝐾) = ((𝑅𝑟0)↑𝑟1))
62 simp3r 1201 . . . . . . . . . 10 ((𝐽 = 0 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))
6358, 60breq12d 5160 . . . . . . . . . . . 12 ((𝐽 = 0 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝐽 < 𝐾 ↔ 0 < 1))
6443, 63mpbiri 258 . . . . . . . . . . 11 ((𝐽 = 0 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐽 < 𝐾)
6564iftrued 4538 . . . . . . . . . 10 ((𝐽 = 0 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽)
6662, 65, 583eqtrd 2778 . . . . . . . . 9 ((𝐽 = 0 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐼 = 0)
6766oveq2d 7446 . . . . . . . 8 ((𝐽 = 0 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟𝐼) = (𝑅𝑟0))
6857, 61, 673eqtr4d 2784 . . . . . . 7 ((𝐽 = 0 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))
69683exp 1118 . . . . . 6 (𝐽 = 0 → (𝐾 = 1 → ((𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
70 simp1 1135 . . . . . . . . . . 11 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐽 = 1)
7170oveq2d 7446 . . . . . . . . . 10 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟𝐽) = (𝑅𝑟1))
72 simp3l 1200 . . . . . . . . . . 11 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝑅𝑉)
7372relexp1d 15064 . . . . . . . . . 10 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟1) = 𝑅)
7471, 73eqtrd 2774 . . . . . . . . 9 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟𝐽) = 𝑅)
75 simp2 1136 . . . . . . . . 9 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐾 = 1)
7674, 75oveq12d 7448 . . . . . . . 8 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟1))
77 simp3r 1201 . . . . . . . . . 10 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))
7844ltnri 11367 . . . . . . . . . . . 12 ¬ 1 < 1
7970, 75breq12d 5160 . . . . . . . . . . . 12 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝐽 < 𝐾 ↔ 1 < 1))
8078, 79mtbiri 327 . . . . . . . . . . 11 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ¬ 𝐽 < 𝐾)
8180iffalsed 4541 . . . . . . . . . 10 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)
8277, 81, 753eqtrd 2778 . . . . . . . . 9 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → 𝐼 = 1)
8382oveq2d 7446 . . . . . . . 8 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → (𝑅𝑟𝐼) = (𝑅𝑟1))
8476, 83eqtr4d 2777 . . . . . . 7 ((𝐽 = 1 ∧ 𝐾 = 1 ∧ (𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))
85843exp 1118 . . . . . 6 (𝐽 = 1 → (𝐾 = 1 → ((𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
8669, 85jaoi 857 . . . . 5 ((𝐽 = 0 ∨ 𝐽 = 1) → (𝐾 = 1 → ((𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
8754, 86jaod 859 . . . 4 ((𝐽 = 0 ∨ 𝐽 = 1) → ((𝐾 = 0 ∨ 𝐾 = 1) → ((𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
8887imp 406 . . 3 (((𝐽 = 0 ∨ 𝐽 = 1) ∧ (𝐾 = 0 ∨ 𝐾 = 1)) → ((𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼)))
891, 2, 88syl2an 596 . 2 ((𝐽 ∈ {0, 1} ∧ 𝐾 ∈ {0, 1}) → ((𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼)))
9089impcom 407 1 (((𝑅𝑉𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) ∧ (𝐽 ∈ {0, 1} ∧ 𝐾 ∈ {0, 1})) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1536  wcel 2105  Vcvv 3477  cun 3960  ifcif 4530  {cpr 4632   class class class wbr 5147   I cid 5581  dom cdm 5688  ran crn 5689  cres 5690  (class class class)co 7430  0cc0 11152  1c1 11153   < clt 11292  𝑟crelexp 15054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-seq 14039  df-relexp 15055
This theorem is referenced by:  relexp1idm  43703  relexp0idm  43704
  Copyright terms: Public domain W3C validator