Step | Hyp | Ref
| Expression |
1 | | elrgspnsubrun.b |
. . . 4
⊢ 𝐵 = (Base‘𝑅) |
2 | | elrgspnsubrun.t |
. . . 4
⊢ · =
(.r‘𝑅) |
3 | | elrgspnsubrun.z |
. . . 4
⊢ 0 =
(0g‘𝑅) |
4 | | elrgspnsubrun.n |
. . . 4
⊢ 𝑁 = (RingSpan‘𝑅) |
5 | | elrgspnsubrun.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ CRing) |
6 | 5 | ad3antrrr 730 |
. . . 4
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) ∧ 𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0}) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) → 𝑅 ∈ CRing) |
7 | | elrgspnsubrun.e |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ (SubRing‘𝑅)) |
8 | 7 | ad3antrrr 730 |
. . . 4
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) ∧ 𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0}) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) → 𝐸 ∈ (SubRing‘𝑅)) |
9 | | elrgspnsubrun.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝑅)) |
10 | 9 | ad3antrrr 730 |
. . . 4
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) ∧ 𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0}) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) → 𝐹 ∈ (SubRing‘𝑅)) |
11 | 5 | crngringd 20239 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Ring) |
12 | 1 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
13 | 1 | subrgss 20564 |
. . . . . . . . . 10
⊢ (𝐸 ∈ (SubRing‘𝑅) → 𝐸 ⊆ 𝐵) |
14 | 7, 13 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 ⊆ 𝐵) |
15 | 1 | subrgss 20564 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (SubRing‘𝑅) → 𝐹 ⊆ 𝐵) |
16 | 9, 15 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ⊆ 𝐵) |
17 | 14, 16 | unssd 4191 |
. . . . . . . 8
⊢ (𝜑 → (𝐸 ∪ 𝐹) ⊆ 𝐵) |
18 | 4 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 = (RingSpan‘𝑅)) |
19 | | eqidd 2737 |
. . . . . . . 8
⊢ (𝜑 → (𝑁‘(𝐸 ∪ 𝐹)) = (𝑁‘(𝐸 ∪ 𝐹))) |
20 | 11, 12, 17, 18, 19 | rgspncl 20605 |
. . . . . . 7
⊢ (𝜑 → (𝑁‘(𝐸 ∪ 𝐹)) ∈ (SubRing‘𝑅)) |
21 | 1 | subrgss 20564 |
. . . . . . 7
⊢ ((𝑁‘(𝐸 ∪ 𝐹)) ∈ (SubRing‘𝑅) → (𝑁‘(𝐸 ∪ 𝐹)) ⊆ 𝐵) |
22 | 20, 21 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑁‘(𝐸 ∪ 𝐹)) ⊆ 𝐵) |
23 | 22 | sselda 3982 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) → 𝑋 ∈ 𝐵) |
24 | 23 | ad2antrr 726 |
. . . 4
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) ∧ 𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0}) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) → 𝑋 ∈ 𝐵) |
25 | 7, 9 | unexd 7770 |
. . . . . . 7
⊢ (𝜑 → (𝐸 ∪ 𝐹) ∈ V) |
26 | | wrdexg 14558 |
. . . . . . 7
⊢ ((𝐸 ∪ 𝐹) ∈ V → Word (𝐸 ∪ 𝐹) ∈ V) |
27 | 25, 26 | syl 17 |
. . . . . 6
⊢ (𝜑 → Word (𝐸 ∪ 𝐹) ∈ V) |
28 | 27 | ad3antrrr 730 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) ∧ 𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0}) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) → Word (𝐸 ∪ 𝐹) ∈ V) |
29 | | zex 12618 |
. . . . . 6
⊢ ℤ
∈ V |
30 | 29 | a1i 11 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) ∧ 𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0}) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) → ℤ ∈
V) |
31 | | elrabi 3686 |
. . . . . 6
⊢ (𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0} → 𝑔 ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹))) |
32 | 31 | ad2antlr 727 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) ∧ 𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0}) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) → 𝑔 ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹))) |
33 | 28, 30, 32 | elmaprd 32678 |
. . . 4
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) ∧ 𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0}) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) → 𝑔:Word (𝐸 ∪ 𝐹)⟶ℤ) |
34 | | breq1 5144 |
. . . . . . 7
⊢ (ℎ = 𝑔 → (ℎ finSupp 0 ↔ 𝑔 finSupp 0)) |
35 | 34 | elrab 3691 |
. . . . . 6
⊢ (𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0} ↔ (𝑔 ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∧ 𝑔 finSupp 0)) |
36 | 35 | simprbi 496 |
. . . . 5
⊢ (𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0} → 𝑔 finSupp 0) |
37 | 36 | ad2antlr 727 |
. . . 4
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) ∧ 𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0}) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) → 𝑔 finSupp 0) |
38 | | fveq2 6904 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑤 → (𝑔‘𝑣) = (𝑔‘𝑤)) |
39 | | oveq2 7437 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑤 → ((mulGrp‘𝑅) Σg 𝑣) = ((mulGrp‘𝑅) Σg
𝑤)) |
40 | 38, 39 | oveq12d 7447 |
. . . . . . . . 9
⊢ (𝑣 = 𝑤 → ((𝑔‘𝑣)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑣)) = ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))) |
41 | 40 | cbvmptv 5253 |
. . . . . . . 8
⊢ (𝑣 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑣)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑣))) = (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))) |
42 | 41 | oveq2i 7440 |
. . . . . . 7
⊢ (𝑅 Σg
(𝑣 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑣)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑣)))) = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)))) |
43 | 42 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) ∧ 𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0}) → (𝑅 Σg (𝑣 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑣)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑣)))) = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) |
44 | 43 | eqeq2d 2747 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) ∧ 𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0}) → (𝑋 = (𝑅 Σg (𝑣 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑣)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑣)))) ↔ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)))))) |
45 | 44 | biimpar 477 |
. . . 4
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) ∧ 𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0}) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) → 𝑋 = (𝑅 Σg (𝑣 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑣)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑣))))) |
46 | 1, 2, 3, 4, 6, 8, 10, 24, 33, 37, 45 | elrgspnsubrunlem2 33240 |
. . 3
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) ∧ 𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0}) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) → ∃𝑝 ∈ (𝐸 ↑m 𝐹)(𝑝 finSupp 0 ∧ 𝑋 = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓))))) |
47 | | eqid 2736 |
. . . . 5
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
48 | | eqid 2736 |
. . . . 5
⊢
(.g‘𝑅) = (.g‘𝑅) |
49 | | breq1 5144 |
. . . . . 6
⊢ (ℎ = 𝑖 → (ℎ finSupp 0 ↔ 𝑖 finSupp 0)) |
50 | 49 | cbvrabv 3446 |
. . . . 5
⊢ {ℎ ∈ (ℤ
↑m Word (𝐸
∪ 𝐹)) ∣ ℎ finSupp 0} = {𝑖 ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ 𝑖 finSupp 0} |
51 | 1, 47, 48, 4, 50, 11, 17 | elrgspn 33238 |
. . . 4
⊢ (𝜑 → (𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹)) ↔ ∃𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0}𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)))))) |
52 | 51 | biimpa 476 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) → ∃𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0}𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) |
53 | 46, 52 | r19.29a 3161 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) → ∃𝑝 ∈ (𝐸 ↑m 𝐹)(𝑝 finSupp 0 ∧ 𝑋 = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓))))) |
54 | 5 | ad3antrrr 730 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐸 ↑m 𝐹)) ∧ 𝑝 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓)))) → 𝑅 ∈ CRing) |
55 | 7 | ad3antrrr 730 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐸 ↑m 𝐹)) ∧ 𝑝 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓)))) → 𝐸 ∈ (SubRing‘𝑅)) |
56 | 9 | ad3antrrr 730 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐸 ↑m 𝐹)) ∧ 𝑝 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓)))) → 𝐹 ∈ (SubRing‘𝑅)) |
57 | 7, 9 | elmapd 8876 |
. . . . . . 7
⊢ (𝜑 → (𝑝 ∈ (𝐸 ↑m 𝐹) ↔ 𝑝:𝐹⟶𝐸)) |
58 | 57 | biimpa 476 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐸 ↑m 𝐹)) → 𝑝:𝐹⟶𝐸) |
59 | 58 | ad2antrr 726 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐸 ↑m 𝐹)) ∧ 𝑝 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓)))) → 𝑝:𝐹⟶𝐸) |
60 | | simplr 769 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐸 ↑m 𝐹)) ∧ 𝑝 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓)))) → 𝑝 finSupp 0 ) |
61 | | fveq2 6904 |
. . . . . . . . . . 11
⊢ (𝑓 = ℎ → (𝑝‘𝑓) = (𝑝‘ℎ)) |
62 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑓 = ℎ → 𝑓 = ℎ) |
63 | 61, 62 | oveq12d 7447 |
. . . . . . . . . 10
⊢ (𝑓 = ℎ → ((𝑝‘𝑓) · 𝑓) = ((𝑝‘ℎ) · ℎ)) |
64 | 63 | cbvmptv 5253 |
. . . . . . . . 9
⊢ (𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓)) = (ℎ ∈ 𝐹 ↦ ((𝑝‘ℎ) · ℎ)) |
65 | 64 | oveq2i 7440 |
. . . . . . . 8
⊢ (𝑅 Σg
(𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓))) = (𝑅 Σg (ℎ ∈ 𝐹 ↦ ((𝑝‘ℎ) · ℎ))) |
66 | 65 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑝 ∈ (𝐸 ↑m 𝐹)) ∧ 𝑝 finSupp 0 ) → (𝑅 Σg
(𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓))) = (𝑅 Σg (ℎ ∈ 𝐹 ↦ ((𝑝‘ℎ) · ℎ)))) |
67 | 66 | eqeq2d 2747 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑝 ∈ (𝐸 ↑m 𝐹)) ∧ 𝑝 finSupp 0 ) → (𝑋 = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓))) ↔ 𝑋 = (𝑅 Σg (ℎ ∈ 𝐹 ↦ ((𝑝‘ℎ) · ℎ))))) |
68 | 67 | biimpa 476 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐸 ↑m 𝐹)) ∧ 𝑝 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓)))) → 𝑋 = (𝑅 Σg (ℎ ∈ 𝐹 ↦ ((𝑝‘ℎ) · ℎ)))) |
69 | | fveq2 6904 |
. . . . . . . 8
⊢ (𝑓 = 𝑔 → (𝑝‘𝑓) = (𝑝‘𝑔)) |
70 | | id 22 |
. . . . . . . 8
⊢ (𝑓 = 𝑔 → 𝑓 = 𝑔) |
71 | 69, 70 | s2eqd 14898 |
. . . . . . 7
⊢ (𝑓 = 𝑔 → 〈“(𝑝‘𝑓)𝑓”〉 = 〈“(𝑝‘𝑔)𝑔”〉) |
72 | 71 | cbvmptv 5253 |
. . . . . 6
⊢ (𝑓 ∈ (𝑝 supp 0 ) ↦
〈“(𝑝‘𝑓)𝑓”〉) = (𝑔 ∈ (𝑝 supp 0 ) ↦
〈“(𝑝‘𝑔)𝑔”〉) |
73 | 72 | rneqi 5946 |
. . . . 5
⊢ ran
(𝑓 ∈ (𝑝 supp 0 ) ↦
〈“(𝑝‘𝑓)𝑓”〉) = ran (𝑔 ∈ (𝑝 supp 0 ) ↦
〈“(𝑝‘𝑔)𝑔”〉) |
74 | 1, 2, 3, 4, 54, 55, 56, 59, 60, 68, 73 | elrgspnsubrunlem1 33239 |
. . . 4
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐸 ↑m 𝐹)) ∧ 𝑝 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓)))) → 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) |
75 | 74 | anasss 466 |
. . 3
⊢ (((𝜑 ∧ 𝑝 ∈ (𝐸 ↑m 𝐹)) ∧ (𝑝 finSupp 0 ∧ 𝑋 = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓))))) → 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) |
76 | 75 | r19.29an 3157 |
. 2
⊢ ((𝜑 ∧ ∃𝑝 ∈ (𝐸 ↑m 𝐹)(𝑝 finSupp 0 ∧ 𝑋 = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓))))) → 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) |
77 | 53, 76 | impbida 801 |
1
⊢ (𝜑 → (𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹)) ↔ ∃𝑝 ∈ (𝐸 ↑m 𝐹)(𝑝 finSupp 0 ∧ 𝑋 = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓)))))) |