| Step | Hyp | Ref
| Expression |
| 1 | | elrgspnsubrun.b |
. . . 4
⊢ 𝐵 = (Base‘𝑅) |
| 2 | | elrgspnsubrun.t |
. . . 4
⊢ · =
(.r‘𝑅) |
| 3 | | elrgspnsubrun.z |
. . . 4
⊢ 0 =
(0g‘𝑅) |
| 4 | | elrgspnsubrun.n |
. . . 4
⊢ 𝑁 = (RingSpan‘𝑅) |
| 5 | | elrgspnsubrun.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ CRing) |
| 6 | 5 | ad3antrrr 730 |
. . . 4
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) ∧ 𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0}) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) → 𝑅 ∈ CRing) |
| 7 | | elrgspnsubrun.e |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ (SubRing‘𝑅)) |
| 8 | 7 | ad3antrrr 730 |
. . . 4
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) ∧ 𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0}) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) → 𝐸 ∈ (SubRing‘𝑅)) |
| 9 | | elrgspnsubrun.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝑅)) |
| 10 | 9 | ad3antrrr 730 |
. . . 4
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) ∧ 𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0}) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) → 𝐹 ∈ (SubRing‘𝑅)) |
| 11 | 5 | crngringd 20212 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 12 | 1 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
| 13 | 1 | subrgss 20541 |
. . . . . . . . . 10
⊢ (𝐸 ∈ (SubRing‘𝑅) → 𝐸 ⊆ 𝐵) |
| 14 | 7, 13 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 ⊆ 𝐵) |
| 15 | 1 | subrgss 20541 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (SubRing‘𝑅) → 𝐹 ⊆ 𝐵) |
| 16 | 9, 15 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ⊆ 𝐵) |
| 17 | 14, 16 | unssd 4172 |
. . . . . . . 8
⊢ (𝜑 → (𝐸 ∪ 𝐹) ⊆ 𝐵) |
| 18 | 4 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 = (RingSpan‘𝑅)) |
| 19 | | eqidd 2735 |
. . . . . . . 8
⊢ (𝜑 → (𝑁‘(𝐸 ∪ 𝐹)) = (𝑁‘(𝐸 ∪ 𝐹))) |
| 20 | 11, 12, 17, 18, 19 | rgspncl 20582 |
. . . . . . 7
⊢ (𝜑 → (𝑁‘(𝐸 ∪ 𝐹)) ∈ (SubRing‘𝑅)) |
| 21 | 1 | subrgss 20541 |
. . . . . . 7
⊢ ((𝑁‘(𝐸 ∪ 𝐹)) ∈ (SubRing‘𝑅) → (𝑁‘(𝐸 ∪ 𝐹)) ⊆ 𝐵) |
| 22 | 20, 21 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑁‘(𝐸 ∪ 𝐹)) ⊆ 𝐵) |
| 23 | 22 | sselda 3963 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) → 𝑋 ∈ 𝐵) |
| 24 | 23 | ad2antrr 726 |
. . . 4
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) ∧ 𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0}) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) → 𝑋 ∈ 𝐵) |
| 25 | 7, 9 | unexd 7756 |
. . . . . . 7
⊢ (𝜑 → (𝐸 ∪ 𝐹) ∈ V) |
| 26 | | wrdexg 14545 |
. . . . . . 7
⊢ ((𝐸 ∪ 𝐹) ∈ V → Word (𝐸 ∪ 𝐹) ∈ V) |
| 27 | 25, 26 | syl 17 |
. . . . . 6
⊢ (𝜑 → Word (𝐸 ∪ 𝐹) ∈ V) |
| 28 | 27 | ad3antrrr 730 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) ∧ 𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0}) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) → Word (𝐸 ∪ 𝐹) ∈ V) |
| 29 | | zex 12605 |
. . . . . 6
⊢ ℤ
∈ V |
| 30 | 29 | a1i 11 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) ∧ 𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0}) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) → ℤ ∈
V) |
| 31 | | elrabi 3670 |
. . . . . 6
⊢ (𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0} → 𝑔 ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹))) |
| 32 | 31 | ad2antlr 727 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) ∧ 𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0}) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) → 𝑔 ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹))) |
| 33 | 28, 30, 32 | elmaprd 32625 |
. . . 4
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) ∧ 𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0}) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) → 𝑔:Word (𝐸 ∪ 𝐹)⟶ℤ) |
| 34 | | breq1 5126 |
. . . . . . 7
⊢ (ℎ = 𝑔 → (ℎ finSupp 0 ↔ 𝑔 finSupp 0)) |
| 35 | 34 | elrab 3675 |
. . . . . 6
⊢ (𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0} ↔ (𝑔 ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∧ 𝑔 finSupp 0)) |
| 36 | 35 | simprbi 496 |
. . . . 5
⊢ (𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0} → 𝑔 finSupp 0) |
| 37 | 36 | ad2antlr 727 |
. . . 4
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) ∧ 𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0}) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) → 𝑔 finSupp 0) |
| 38 | | fveq2 6886 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑤 → (𝑔‘𝑣) = (𝑔‘𝑤)) |
| 39 | | oveq2 7421 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑤 → ((mulGrp‘𝑅) Σg 𝑣) = ((mulGrp‘𝑅) Σg
𝑤)) |
| 40 | 38, 39 | oveq12d 7431 |
. . . . . . . . 9
⊢ (𝑣 = 𝑤 → ((𝑔‘𝑣)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑣)) = ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))) |
| 41 | 40 | cbvmptv 5235 |
. . . . . . . 8
⊢ (𝑣 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑣)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑣))) = (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))) |
| 42 | 41 | oveq2i 7424 |
. . . . . . 7
⊢ (𝑅 Σg
(𝑣 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑣)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑣)))) = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)))) |
| 43 | 42 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) ∧ 𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0}) → (𝑅 Σg (𝑣 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑣)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑣)))) = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) |
| 44 | 43 | eqeq2d 2745 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) ∧ 𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0}) → (𝑋 = (𝑅 Σg (𝑣 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑣)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑣)))) ↔ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)))))) |
| 45 | 44 | biimpar 477 |
. . . 4
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) ∧ 𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0}) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) → 𝑋 = (𝑅 Σg (𝑣 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑣)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑣))))) |
| 46 | 1, 2, 3, 4, 6, 8, 10, 24, 33, 37, 45 | elrgspnsubrunlem2 33196 |
. . 3
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) ∧ 𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0}) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) → ∃𝑝 ∈ (𝐸 ↑m 𝐹)(𝑝 finSupp 0 ∧ 𝑋 = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓))))) |
| 47 | | eqid 2734 |
. . . . 5
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
| 48 | | eqid 2734 |
. . . . 5
⊢
(.g‘𝑅) = (.g‘𝑅) |
| 49 | | breq1 5126 |
. . . . . 6
⊢ (ℎ = 𝑖 → (ℎ finSupp 0 ↔ 𝑖 finSupp 0)) |
| 50 | 49 | cbvrabv 3430 |
. . . . 5
⊢ {ℎ ∈ (ℤ
↑m Word (𝐸
∪ 𝐹)) ∣ ℎ finSupp 0} = {𝑖 ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ 𝑖 finSupp 0} |
| 51 | 1, 47, 48, 4, 50, 11, 17 | elrgspn 33194 |
. . . 4
⊢ (𝜑 → (𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹)) ↔ ∃𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0}𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)))))) |
| 52 | 51 | biimpa 476 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) → ∃𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0}𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) |
| 53 | 46, 52 | r19.29a 3149 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) → ∃𝑝 ∈ (𝐸 ↑m 𝐹)(𝑝 finSupp 0 ∧ 𝑋 = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓))))) |
| 54 | 5 | ad3antrrr 730 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐸 ↑m 𝐹)) ∧ 𝑝 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓)))) → 𝑅 ∈ CRing) |
| 55 | 7 | ad3antrrr 730 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐸 ↑m 𝐹)) ∧ 𝑝 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓)))) → 𝐸 ∈ (SubRing‘𝑅)) |
| 56 | 9 | ad3antrrr 730 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐸 ↑m 𝐹)) ∧ 𝑝 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓)))) → 𝐹 ∈ (SubRing‘𝑅)) |
| 57 | 7, 9 | elmapd 8862 |
. . . . . . 7
⊢ (𝜑 → (𝑝 ∈ (𝐸 ↑m 𝐹) ↔ 𝑝:𝐹⟶𝐸)) |
| 58 | 57 | biimpa 476 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐸 ↑m 𝐹)) → 𝑝:𝐹⟶𝐸) |
| 59 | 58 | ad2antrr 726 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐸 ↑m 𝐹)) ∧ 𝑝 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓)))) → 𝑝:𝐹⟶𝐸) |
| 60 | | simplr 768 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐸 ↑m 𝐹)) ∧ 𝑝 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓)))) → 𝑝 finSupp 0 ) |
| 61 | | fveq2 6886 |
. . . . . . . . . . 11
⊢ (𝑓 = ℎ → (𝑝‘𝑓) = (𝑝‘ℎ)) |
| 62 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑓 = ℎ → 𝑓 = ℎ) |
| 63 | 61, 62 | oveq12d 7431 |
. . . . . . . . . 10
⊢ (𝑓 = ℎ → ((𝑝‘𝑓) · 𝑓) = ((𝑝‘ℎ) · ℎ)) |
| 64 | 63 | cbvmptv 5235 |
. . . . . . . . 9
⊢ (𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓)) = (ℎ ∈ 𝐹 ↦ ((𝑝‘ℎ) · ℎ)) |
| 65 | 64 | oveq2i 7424 |
. . . . . . . 8
⊢ (𝑅 Σg
(𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓))) = (𝑅 Σg (ℎ ∈ 𝐹 ↦ ((𝑝‘ℎ) · ℎ))) |
| 66 | 65 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑝 ∈ (𝐸 ↑m 𝐹)) ∧ 𝑝 finSupp 0 ) → (𝑅 Σg
(𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓))) = (𝑅 Σg (ℎ ∈ 𝐹 ↦ ((𝑝‘ℎ) · ℎ)))) |
| 67 | 66 | eqeq2d 2745 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑝 ∈ (𝐸 ↑m 𝐹)) ∧ 𝑝 finSupp 0 ) → (𝑋 = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓))) ↔ 𝑋 = (𝑅 Σg (ℎ ∈ 𝐹 ↦ ((𝑝‘ℎ) · ℎ))))) |
| 68 | 67 | biimpa 476 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐸 ↑m 𝐹)) ∧ 𝑝 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓)))) → 𝑋 = (𝑅 Σg (ℎ ∈ 𝐹 ↦ ((𝑝‘ℎ) · ℎ)))) |
| 69 | | fveq2 6886 |
. . . . . . . 8
⊢ (𝑓 = 𝑔 → (𝑝‘𝑓) = (𝑝‘𝑔)) |
| 70 | | id 22 |
. . . . . . . 8
⊢ (𝑓 = 𝑔 → 𝑓 = 𝑔) |
| 71 | 69, 70 | s2eqd 14885 |
. . . . . . 7
⊢ (𝑓 = 𝑔 → 〈“(𝑝‘𝑓)𝑓”〉 = 〈“(𝑝‘𝑔)𝑔”〉) |
| 72 | 71 | cbvmptv 5235 |
. . . . . 6
⊢ (𝑓 ∈ (𝑝 supp 0 ) ↦
〈“(𝑝‘𝑓)𝑓”〉) = (𝑔 ∈ (𝑝 supp 0 ) ↦
〈“(𝑝‘𝑔)𝑔”〉) |
| 73 | 72 | rneqi 5928 |
. . . . 5
⊢ ran
(𝑓 ∈ (𝑝 supp 0 ) ↦
〈“(𝑝‘𝑓)𝑓”〉) = ran (𝑔 ∈ (𝑝 supp 0 ) ↦
〈“(𝑝‘𝑔)𝑔”〉) |
| 74 | 1, 2, 3, 4, 54, 55, 56, 59, 60, 68, 73 | elrgspnsubrunlem1 33195 |
. . . 4
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐸 ↑m 𝐹)) ∧ 𝑝 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓)))) → 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) |
| 75 | 74 | anasss 466 |
. . 3
⊢ (((𝜑 ∧ 𝑝 ∈ (𝐸 ↑m 𝐹)) ∧ (𝑝 finSupp 0 ∧ 𝑋 = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓))))) → 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) |
| 76 | 75 | r19.29an 3145 |
. 2
⊢ ((𝜑 ∧ ∃𝑝 ∈ (𝐸 ↑m 𝐹)(𝑝 finSupp 0 ∧ 𝑋 = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓))))) → 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) |
| 77 | 53, 76 | impbida 800 |
1
⊢ (𝜑 → (𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹)) ↔ ∃𝑝 ∈ (𝐸 ↑m 𝐹)(𝑝 finSupp 0 ∧ 𝑋 = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓)))))) |