Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrgspnsubrun Structured version   Visualization version   GIF version

Theorem elrgspnsubrun 33197
Description: Membership in the ring span of the union of two subrings of a commutative ring. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
elrgspnsubrun.b 𝐵 = (Base‘𝑅)
elrgspnsubrun.t · = (.r𝑅)
elrgspnsubrun.z 0 = (0g𝑅)
elrgspnsubrun.n 𝑁 = (RingSpan‘𝑅)
elrgspnsubrun.r (𝜑𝑅 ∈ CRing)
elrgspnsubrun.e (𝜑𝐸 ∈ (SubRing‘𝑅))
elrgspnsubrun.f (𝜑𝐹 ∈ (SubRing‘𝑅))
Assertion
Ref Expression
elrgspnsubrun (𝜑 → (𝑋 ∈ (𝑁‘(𝐸𝐹)) ↔ ∃𝑝 ∈ (𝐸m 𝐹)(𝑝 finSupp 0𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓))))))
Distinct variable groups:   0 ,𝑓,𝑝   · ,𝑓,𝑝   𝐵,𝑓   𝑓,𝐸,𝑝   𝑓,𝐹,𝑝   𝑓,𝑁,𝑝   𝑅,𝑓,𝑝   𝑓,𝑋,𝑝   𝜑,𝑓,𝑝
Allowed substitution hint:   𝐵(𝑝)

Proof of Theorem elrgspnsubrun
Dummy variables 𝑔 𝑣 𝑤 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrgspnsubrun.b . . . 4 𝐵 = (Base‘𝑅)
2 elrgspnsubrun.t . . . 4 · = (.r𝑅)
3 elrgspnsubrun.z . . . 4 0 = (0g𝑅)
4 elrgspnsubrun.n . . . 4 𝑁 = (RingSpan‘𝑅)
5 elrgspnsubrun.r . . . . 5 (𝜑𝑅 ∈ CRing)
65ad3antrrr 730 . . . 4 ((((𝜑𝑋 ∈ (𝑁‘(𝐸𝐹))) ∧ 𝑔 ∈ { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0}) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))) → 𝑅 ∈ CRing)
7 elrgspnsubrun.e . . . . 5 (𝜑𝐸 ∈ (SubRing‘𝑅))
87ad3antrrr 730 . . . 4 ((((𝜑𝑋 ∈ (𝑁‘(𝐸𝐹))) ∧ 𝑔 ∈ { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0}) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))) → 𝐸 ∈ (SubRing‘𝑅))
9 elrgspnsubrun.f . . . . 5 (𝜑𝐹 ∈ (SubRing‘𝑅))
109ad3antrrr 730 . . . 4 ((((𝜑𝑋 ∈ (𝑁‘(𝐸𝐹))) ∧ 𝑔 ∈ { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0}) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))) → 𝐹 ∈ (SubRing‘𝑅))
115crngringd 20212 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
121a1i 11 . . . . . . . 8 (𝜑𝐵 = (Base‘𝑅))
131subrgss 20541 . . . . . . . . . 10 (𝐸 ∈ (SubRing‘𝑅) → 𝐸𝐵)
147, 13syl 17 . . . . . . . . 9 (𝜑𝐸𝐵)
151subrgss 20541 . . . . . . . . . 10 (𝐹 ∈ (SubRing‘𝑅) → 𝐹𝐵)
169, 15syl 17 . . . . . . . . 9 (𝜑𝐹𝐵)
1714, 16unssd 4172 . . . . . . . 8 (𝜑 → (𝐸𝐹) ⊆ 𝐵)
184a1i 11 . . . . . . . 8 (𝜑𝑁 = (RingSpan‘𝑅))
19 eqidd 2735 . . . . . . . 8 (𝜑 → (𝑁‘(𝐸𝐹)) = (𝑁‘(𝐸𝐹)))
2011, 12, 17, 18, 19rgspncl 20582 . . . . . . 7 (𝜑 → (𝑁‘(𝐸𝐹)) ∈ (SubRing‘𝑅))
211subrgss 20541 . . . . . . 7 ((𝑁‘(𝐸𝐹)) ∈ (SubRing‘𝑅) → (𝑁‘(𝐸𝐹)) ⊆ 𝐵)
2220, 21syl 17 . . . . . 6 (𝜑 → (𝑁‘(𝐸𝐹)) ⊆ 𝐵)
2322sselda 3963 . . . . 5 ((𝜑𝑋 ∈ (𝑁‘(𝐸𝐹))) → 𝑋𝐵)
2423ad2antrr 726 . . . 4 ((((𝜑𝑋 ∈ (𝑁‘(𝐸𝐹))) ∧ 𝑔 ∈ { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0}) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))) → 𝑋𝐵)
257, 9unexd 7756 . . . . . . 7 (𝜑 → (𝐸𝐹) ∈ V)
26 wrdexg 14545 . . . . . . 7 ((𝐸𝐹) ∈ V → Word (𝐸𝐹) ∈ V)
2725, 26syl 17 . . . . . 6 (𝜑 → Word (𝐸𝐹) ∈ V)
2827ad3antrrr 730 . . . . 5 ((((𝜑𝑋 ∈ (𝑁‘(𝐸𝐹))) ∧ 𝑔 ∈ { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0}) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))) → Word (𝐸𝐹) ∈ V)
29 zex 12605 . . . . . 6 ℤ ∈ V
3029a1i 11 . . . . 5 ((((𝜑𝑋 ∈ (𝑁‘(𝐸𝐹))) ∧ 𝑔 ∈ { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0}) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))) → ℤ ∈ V)
31 elrabi 3670 . . . . . 6 (𝑔 ∈ { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0} → 𝑔 ∈ (ℤ ↑m Word (𝐸𝐹)))
3231ad2antlr 727 . . . . 5 ((((𝜑𝑋 ∈ (𝑁‘(𝐸𝐹))) ∧ 𝑔 ∈ { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0}) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))) → 𝑔 ∈ (ℤ ↑m Word (𝐸𝐹)))
3328, 30, 32elmaprd 32625 . . . 4 ((((𝜑𝑋 ∈ (𝑁‘(𝐸𝐹))) ∧ 𝑔 ∈ { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0}) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))) → 𝑔:Word (𝐸𝐹)⟶ℤ)
34 breq1 5126 . . . . . . 7 ( = 𝑔 → ( finSupp 0 ↔ 𝑔 finSupp 0))
3534elrab 3675 . . . . . 6 (𝑔 ∈ { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0} ↔ (𝑔 ∈ (ℤ ↑m Word (𝐸𝐹)) ∧ 𝑔 finSupp 0))
3635simprbi 496 . . . . 5 (𝑔 ∈ { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0} → 𝑔 finSupp 0)
3736ad2antlr 727 . . . 4 ((((𝜑𝑋 ∈ (𝑁‘(𝐸𝐹))) ∧ 𝑔 ∈ { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0}) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))) → 𝑔 finSupp 0)
38 fveq2 6886 . . . . . . . . . 10 (𝑣 = 𝑤 → (𝑔𝑣) = (𝑔𝑤))
39 oveq2 7421 . . . . . . . . . 10 (𝑣 = 𝑤 → ((mulGrp‘𝑅) Σg 𝑣) = ((mulGrp‘𝑅) Σg 𝑤))
4038, 39oveq12d 7431 . . . . . . . . 9 (𝑣 = 𝑤 → ((𝑔𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))
4140cbvmptv 5235 . . . . . . . 8 (𝑣 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣))) = (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))
4241oveq2i 7424 . . . . . . 7 (𝑅 Σg (𝑣 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)))) = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))
4342a1i 11 . . . . . 6 (((𝜑𝑋 ∈ (𝑁‘(𝐸𝐹))) ∧ 𝑔 ∈ { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0}) → (𝑅 Σg (𝑣 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)))) = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
4443eqeq2d 2745 . . . . 5 (((𝜑𝑋 ∈ (𝑁‘(𝐸𝐹))) ∧ 𝑔 ∈ { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0}) → (𝑋 = (𝑅 Σg (𝑣 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)))) ↔ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))))
4544biimpar 477 . . . 4 ((((𝜑𝑋 ∈ (𝑁‘(𝐸𝐹))) ∧ 𝑔 ∈ { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0}) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))) → 𝑋 = (𝑅 Σg (𝑣 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)))))
461, 2, 3, 4, 6, 8, 10, 24, 33, 37, 45elrgspnsubrunlem2 33196 . . 3 ((((𝜑𝑋 ∈ (𝑁‘(𝐸𝐹))) ∧ 𝑔 ∈ { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0}) ∧ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))) → ∃𝑝 ∈ (𝐸m 𝐹)(𝑝 finSupp 0𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓)))))
47 eqid 2734 . . . . 5 (mulGrp‘𝑅) = (mulGrp‘𝑅)
48 eqid 2734 . . . . 5 (.g𝑅) = (.g𝑅)
49 breq1 5126 . . . . . 6 ( = 𝑖 → ( finSupp 0 ↔ 𝑖 finSupp 0))
5049cbvrabv 3430 . . . . 5 { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0} = {𝑖 ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ 𝑖 finSupp 0}
511, 47, 48, 4, 50, 11, 17elrgspn 33194 . . . 4 (𝜑 → (𝑋 ∈ (𝑁‘(𝐸𝐹)) ↔ ∃𝑔 ∈ { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0}𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))))
5251biimpa 476 . . 3 ((𝜑𝑋 ∈ (𝑁‘(𝐸𝐹))) → ∃𝑔 ∈ { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0}𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
5346, 52r19.29a 3149 . 2 ((𝜑𝑋 ∈ (𝑁‘(𝐸𝐹))) → ∃𝑝 ∈ (𝐸m 𝐹)(𝑝 finSupp 0𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓)))))
545ad3antrrr 730 . . . . 5 ((((𝜑𝑝 ∈ (𝐸m 𝐹)) ∧ 𝑝 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓)))) → 𝑅 ∈ CRing)
557ad3antrrr 730 . . . . 5 ((((𝜑𝑝 ∈ (𝐸m 𝐹)) ∧ 𝑝 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓)))) → 𝐸 ∈ (SubRing‘𝑅))
569ad3antrrr 730 . . . . 5 ((((𝜑𝑝 ∈ (𝐸m 𝐹)) ∧ 𝑝 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓)))) → 𝐹 ∈ (SubRing‘𝑅))
577, 9elmapd 8862 . . . . . . 7 (𝜑 → (𝑝 ∈ (𝐸m 𝐹) ↔ 𝑝:𝐹𝐸))
5857biimpa 476 . . . . . 6 ((𝜑𝑝 ∈ (𝐸m 𝐹)) → 𝑝:𝐹𝐸)
5958ad2antrr 726 . . . . 5 ((((𝜑𝑝 ∈ (𝐸m 𝐹)) ∧ 𝑝 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓)))) → 𝑝:𝐹𝐸)
60 simplr 768 . . . . 5 ((((𝜑𝑝 ∈ (𝐸m 𝐹)) ∧ 𝑝 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓)))) → 𝑝 finSupp 0 )
61 fveq2 6886 . . . . . . . . . . 11 (𝑓 = → (𝑝𝑓) = (𝑝))
62 id 22 . . . . . . . . . . 11 (𝑓 = 𝑓 = )
6361, 62oveq12d 7431 . . . . . . . . . 10 (𝑓 = → ((𝑝𝑓) · 𝑓) = ((𝑝) · ))
6463cbvmptv 5235 . . . . . . . . 9 (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓)) = (𝐹 ↦ ((𝑝) · ))
6564oveq2i 7424 . . . . . . . 8 (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓))) = (𝑅 Σg (𝐹 ↦ ((𝑝) · )))
6665a1i 11 . . . . . . 7 (((𝜑𝑝 ∈ (𝐸m 𝐹)) ∧ 𝑝 finSupp 0 ) → (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓))) = (𝑅 Σg (𝐹 ↦ ((𝑝) · ))))
6766eqeq2d 2745 . . . . . 6 (((𝜑𝑝 ∈ (𝐸m 𝐹)) ∧ 𝑝 finSupp 0 ) → (𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓))) ↔ 𝑋 = (𝑅 Σg (𝐹 ↦ ((𝑝) · )))))
6867biimpa 476 . . . . 5 ((((𝜑𝑝 ∈ (𝐸m 𝐹)) ∧ 𝑝 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓)))) → 𝑋 = (𝑅 Σg (𝐹 ↦ ((𝑝) · ))))
69 fveq2 6886 . . . . . . . 8 (𝑓 = 𝑔 → (𝑝𝑓) = (𝑝𝑔))
70 id 22 . . . . . . . 8 (𝑓 = 𝑔𝑓 = 𝑔)
7169, 70s2eqd 14885 . . . . . . 7 (𝑓 = 𝑔 → ⟨“(𝑝𝑓)𝑓”⟩ = ⟨“(𝑝𝑔)𝑔”⟩)
7271cbvmptv 5235 . . . . . 6 (𝑓 ∈ (𝑝 supp 0 ) ↦ ⟨“(𝑝𝑓)𝑓”⟩) = (𝑔 ∈ (𝑝 supp 0 ) ↦ ⟨“(𝑝𝑔)𝑔”⟩)
7372rneqi 5928 . . . . 5 ran (𝑓 ∈ (𝑝 supp 0 ) ↦ ⟨“(𝑝𝑓)𝑓”⟩) = ran (𝑔 ∈ (𝑝 supp 0 ) ↦ ⟨“(𝑝𝑔)𝑔”⟩)
741, 2, 3, 4, 54, 55, 56, 59, 60, 68, 73elrgspnsubrunlem1 33195 . . . 4 ((((𝜑𝑝 ∈ (𝐸m 𝐹)) ∧ 𝑝 finSupp 0 ) ∧ 𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓)))) → 𝑋 ∈ (𝑁‘(𝐸𝐹)))
7574anasss 466 . . 3 (((𝜑𝑝 ∈ (𝐸m 𝐹)) ∧ (𝑝 finSupp 0𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓))))) → 𝑋 ∈ (𝑁‘(𝐸𝐹)))
7675r19.29an 3145 . 2 ((𝜑 ∧ ∃𝑝 ∈ (𝐸m 𝐹)(𝑝 finSupp 0𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓))))) → 𝑋 ∈ (𝑁‘(𝐸𝐹)))
7753, 76impbida 800 1 (𝜑 → (𝑋 ∈ (𝑁‘(𝐸𝐹)) ↔ ∃𝑝 ∈ (𝐸m 𝐹)(𝑝 finSupp 0𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wrex 3059  {crab 3419  Vcvv 3463  cun 3929  wss 3931   class class class wbr 5123  cmpt 5205  ran crn 5666  wf 6537  cfv 6541  (class class class)co 7413   supp csupp 8167  m cmap 8848   finSupp cfsupp 9383  0cc0 11137  cz 12596  Word cword 14535  ⟨“cs2 14863  Basecbs 17230  .rcmulr 17275  0gc0g 17456   Σg cgsu 17457  .gcmg 19055  mulGrpcmgp 20106  CRingccrg 20200  SubRingcsubrg 20538  RingSpancrgspn 20579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-reg 9614  ax-inf2 9663  ax-ac2 10485  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-tpos 8233  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-sup 9464  df-oi 9532  df-r1 9786  df-rank 9787  df-card 9961  df-ac 10138  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-xnn0 12583  df-z 12597  df-dec 12717  df-uz 12861  df-rp 13017  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14353  df-word 14536  df-lsw 14584  df-concat 14592  df-s1 14617  df-substr 14662  df-pfx 14692  df-s2 14870  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-clim 15507  df-sum 15706  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17254  df-plusg 17287  df-mulr 17288  df-starv 17289  df-tset 17293  df-ple 17294  df-ds 17296  df-unif 17297  df-0g 17458  df-gsum 17459  df-mre 17601  df-mrc 17602  df-acs 17604  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cntz 19305  df-cmn 19769  df-abl 19770  df-mgp 20107  df-rng 20119  df-ur 20148  df-ring 20201  df-cring 20202  df-oppr 20303  df-subrng 20515  df-subrg 20539  df-rgspn 20580  df-cnfld 21328  df-zring 21421  df-ind 32781
This theorem is referenced by:  fldextrspunlsp  33666
  Copyright terms: Public domain W3C validator