| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > suppun2 | Structured version Visualization version GIF version | ||
| Description: The support of a union is the union of the supports. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| Ref | Expression |
|---|---|
| suppun2.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| suppun2.2 | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| suppun2.3 | ⊢ (𝜑 → 𝑍 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| suppun2 | ⊢ (𝜑 → ((𝐹 ∪ 𝐺) supp 𝑍) = ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvun 6089 | . . . 4 ⊢ ◡(𝐹 ∪ 𝐺) = (◡𝐹 ∪ ◡𝐺) | |
| 2 | 1 | imaeq1i 6005 | . . 3 ⊢ (◡(𝐹 ∪ 𝐺) “ (V ∖ {𝑍})) = ((◡𝐹 ∪ ◡𝐺) “ (V ∖ {𝑍})) |
| 3 | imaundir 6097 | . . 3 ⊢ ((◡𝐹 ∪ ◡𝐺) “ (V ∖ {𝑍})) = ((◡𝐹 “ (V ∖ {𝑍})) ∪ (◡𝐺 “ (V ∖ {𝑍}))) | |
| 4 | 2, 3 | eqtri 2754 | . 2 ⊢ (◡(𝐹 ∪ 𝐺) “ (V ∖ {𝑍})) = ((◡𝐹 “ (V ∖ {𝑍})) ∪ (◡𝐺 “ (V ∖ {𝑍}))) |
| 5 | suppun2.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 6 | suppun2.2 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 7 | 5, 6 | unexd 7687 | . . 3 ⊢ (𝜑 → (𝐹 ∪ 𝐺) ∈ V) |
| 8 | suppun2.3 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑋) | |
| 9 | suppimacnv 8104 | . . 3 ⊢ (((𝐹 ∪ 𝐺) ∈ V ∧ 𝑍 ∈ 𝑋) → ((𝐹 ∪ 𝐺) supp 𝑍) = (◡(𝐹 ∪ 𝐺) “ (V ∖ {𝑍}))) | |
| 10 | 7, 8, 9 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐹 ∪ 𝐺) supp 𝑍) = (◡(𝐹 ∪ 𝐺) “ (V ∖ {𝑍}))) |
| 11 | suppimacnv 8104 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑋) → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) | |
| 12 | 5, 8, 11 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) |
| 13 | suppimacnv 8104 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑍 ∈ 𝑋) → (𝐺 supp 𝑍) = (◡𝐺 “ (V ∖ {𝑍}))) | |
| 14 | 6, 8, 13 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐺 supp 𝑍) = (◡𝐺 “ (V ∖ {𝑍}))) |
| 15 | 12, 14 | uneq12d 4116 | . 2 ⊢ (𝜑 → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) = ((◡𝐹 “ (V ∖ {𝑍})) ∪ (◡𝐺 “ (V ∖ {𝑍})))) |
| 16 | 4, 10, 15 | 3eqtr4a 2792 | 1 ⊢ (𝜑 → ((𝐹 ∪ 𝐺) supp 𝑍) = ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∖ cdif 3894 ∪ cun 3895 {csn 4573 ◡ccnv 5613 “ cima 5617 (class class class)co 7346 supp csupp 8090 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-supp 8091 |
| This theorem is referenced by: elrgspnlem4 33212 |
| Copyright terms: Public domain | W3C validator |