Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suppun2 Structured version   Visualization version   GIF version

Theorem suppun2 32665
Description: The support of a union is the union of the supports. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
suppun2.1 (𝜑𝐹𝑉)
suppun2.2 (𝜑𝐺𝑊)
suppun2.3 (𝜑𝑍𝑋)
Assertion
Ref Expression
suppun2 (𝜑 → ((𝐹𝐺) supp 𝑍) = ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)))

Proof of Theorem suppun2
StepHypRef Expression
1 cnvun 6089 . . . 4 (𝐹𝐺) = (𝐹𝐺)
21imaeq1i 6005 . . 3 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐹𝐺) “ (V ∖ {𝑍}))
3 imaundir 6097 . . 3 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐺 “ (V ∖ {𝑍})))
42, 3eqtri 2754 . 2 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐺 “ (V ∖ {𝑍})))
5 suppun2.1 . . . 4 (𝜑𝐹𝑉)
6 suppun2.2 . . . 4 (𝜑𝐺𝑊)
75, 6unexd 7687 . . 3 (𝜑 → (𝐹𝐺) ∈ V)
8 suppun2.3 . . 3 (𝜑𝑍𝑋)
9 suppimacnv 8104 . . 3 (((𝐹𝐺) ∈ V ∧ 𝑍𝑋) → ((𝐹𝐺) supp 𝑍) = ((𝐹𝐺) “ (V ∖ {𝑍})))
107, 8, 9syl2anc 584 . 2 (𝜑 → ((𝐹𝐺) supp 𝑍) = ((𝐹𝐺) “ (V ∖ {𝑍})))
11 suppimacnv 8104 . . . 4 ((𝐹𝑉𝑍𝑋) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
125, 8, 11syl2anc 584 . . 3 (𝜑 → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
13 suppimacnv 8104 . . . 4 ((𝐺𝑊𝑍𝑋) → (𝐺 supp 𝑍) = (𝐺 “ (V ∖ {𝑍})))
146, 8, 13syl2anc 584 . . 3 (𝜑 → (𝐺 supp 𝑍) = (𝐺 “ (V ∖ {𝑍})))
1512, 14uneq12d 4116 . 2 (𝜑 → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) = ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐺 “ (V ∖ {𝑍}))))
164, 10, 153eqtr4a 2792 1 (𝜑 → ((𝐹𝐺) supp 𝑍) = ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  cdif 3894  cun 3895  {csn 4573  ccnv 5613  cima 5617  (class class class)co 7346   supp csupp 8090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-supp 8091
This theorem is referenced by:  elrgspnlem4  33212
  Copyright terms: Public domain W3C validator