Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suppun2 Structured version   Visualization version   GIF version

Theorem suppun2 32657
Description: The support of a union is the union of the supports. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
suppun2.1 (𝜑𝐹𝑉)
suppun2.2 (𝜑𝐺𝑊)
suppun2.3 (𝜑𝑍𝑋)
Assertion
Ref Expression
suppun2 (𝜑 → ((𝐹𝐺) supp 𝑍) = ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)))

Proof of Theorem suppun2
StepHypRef Expression
1 cnvun 6103 . . . 4 (𝐹𝐺) = (𝐹𝐺)
21imaeq1i 6017 . . 3 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐹𝐺) “ (V ∖ {𝑍}))
3 imaundir 6111 . . 3 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐺 “ (V ∖ {𝑍})))
42, 3eqtri 2752 . 2 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐺 “ (V ∖ {𝑍})))
5 suppun2.1 . . . 4 (𝜑𝐹𝑉)
6 suppun2.2 . . . 4 (𝜑𝐺𝑊)
75, 6unexd 7710 . . 3 (𝜑 → (𝐹𝐺) ∈ V)
8 suppun2.3 . . 3 (𝜑𝑍𝑋)
9 suppimacnv 8130 . . 3 (((𝐹𝐺) ∈ V ∧ 𝑍𝑋) → ((𝐹𝐺) supp 𝑍) = ((𝐹𝐺) “ (V ∖ {𝑍})))
107, 8, 9syl2anc 584 . 2 (𝜑 → ((𝐹𝐺) supp 𝑍) = ((𝐹𝐺) “ (V ∖ {𝑍})))
11 suppimacnv 8130 . . . 4 ((𝐹𝑉𝑍𝑋) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
125, 8, 11syl2anc 584 . . 3 (𝜑 → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
13 suppimacnv 8130 . . . 4 ((𝐺𝑊𝑍𝑋) → (𝐺 supp 𝑍) = (𝐺 “ (V ∖ {𝑍})))
146, 8, 13syl2anc 584 . . 3 (𝜑 → (𝐺 supp 𝑍) = (𝐺 “ (V ∖ {𝑍})))
1512, 14uneq12d 4128 . 2 (𝜑 → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) = ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐺 “ (V ∖ {𝑍}))))
164, 10, 153eqtr4a 2790 1 (𝜑 → ((𝐹𝐺) supp 𝑍) = ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3444  cdif 3908  cun 3909  {csn 4585  ccnv 5630  cima 5634  (class class class)co 7369   supp csupp 8116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-supp 8117
This theorem is referenced by:  elrgspnlem4  33212
  Copyright terms: Public domain W3C validator