| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > suppun2 | Structured version Visualization version GIF version | ||
| Description: The support of a union is the union of the supports. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| Ref | Expression |
|---|---|
| suppun2.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| suppun2.2 | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| suppun2.3 | ⊢ (𝜑 → 𝑍 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| suppun2 | ⊢ (𝜑 → ((𝐹 ∪ 𝐺) supp 𝑍) = ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvun 6118 | . . . 4 ⊢ ◡(𝐹 ∪ 𝐺) = (◡𝐹 ∪ ◡𝐺) | |
| 2 | 1 | imaeq1i 6031 | . . 3 ⊢ (◡(𝐹 ∪ 𝐺) “ (V ∖ {𝑍})) = ((◡𝐹 ∪ ◡𝐺) “ (V ∖ {𝑍})) |
| 3 | imaundir 6126 | . . 3 ⊢ ((◡𝐹 ∪ ◡𝐺) “ (V ∖ {𝑍})) = ((◡𝐹 “ (V ∖ {𝑍})) ∪ (◡𝐺 “ (V ∖ {𝑍}))) | |
| 4 | 2, 3 | eqtri 2753 | . 2 ⊢ (◡(𝐹 ∪ 𝐺) “ (V ∖ {𝑍})) = ((◡𝐹 “ (V ∖ {𝑍})) ∪ (◡𝐺 “ (V ∖ {𝑍}))) |
| 5 | suppun2.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 6 | suppun2.2 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 7 | 5, 6 | unexd 7733 | . . 3 ⊢ (𝜑 → (𝐹 ∪ 𝐺) ∈ V) |
| 8 | suppun2.3 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑋) | |
| 9 | suppimacnv 8156 | . . 3 ⊢ (((𝐹 ∪ 𝐺) ∈ V ∧ 𝑍 ∈ 𝑋) → ((𝐹 ∪ 𝐺) supp 𝑍) = (◡(𝐹 ∪ 𝐺) “ (V ∖ {𝑍}))) | |
| 10 | 7, 8, 9 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐹 ∪ 𝐺) supp 𝑍) = (◡(𝐹 ∪ 𝐺) “ (V ∖ {𝑍}))) |
| 11 | suppimacnv 8156 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑋) → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) | |
| 12 | 5, 8, 11 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) |
| 13 | suppimacnv 8156 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑍 ∈ 𝑋) → (𝐺 supp 𝑍) = (◡𝐺 “ (V ∖ {𝑍}))) | |
| 14 | 6, 8, 13 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐺 supp 𝑍) = (◡𝐺 “ (V ∖ {𝑍}))) |
| 15 | 12, 14 | uneq12d 4135 | . 2 ⊢ (𝜑 → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) = ((◡𝐹 “ (V ∖ {𝑍})) ∪ (◡𝐺 “ (V ∖ {𝑍})))) |
| 16 | 4, 10, 15 | 3eqtr4a 2791 | 1 ⊢ (𝜑 → ((𝐹 ∪ 𝐺) supp 𝑍) = ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∖ cdif 3914 ∪ cun 3915 {csn 4592 ◡ccnv 5640 “ cima 5644 (class class class)co 7390 supp csupp 8142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-supp 8143 |
| This theorem is referenced by: elrgspnlem4 33203 |
| Copyright terms: Public domain | W3C validator |