Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suppun2 Structured version   Visualization version   GIF version

Theorem suppun2 32693
Description: The support of a union is the union of the supports. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
suppun2.1 (𝜑𝐹𝑉)
suppun2.2 (𝜑𝐺𝑊)
suppun2.3 (𝜑𝑍𝑋)
Assertion
Ref Expression
suppun2 (𝜑 → ((𝐹𝐺) supp 𝑍) = ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)))

Proof of Theorem suppun2
StepHypRef Expression
1 cnvun 6162 . . . 4 (𝐹𝐺) = (𝐹𝐺)
21imaeq1i 6075 . . 3 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐹𝐺) “ (V ∖ {𝑍}))
3 imaundir 6170 . . 3 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐺 “ (V ∖ {𝑍})))
42, 3eqtri 2765 . 2 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐺 “ (V ∖ {𝑍})))
5 suppun2.1 . . . 4 (𝜑𝐹𝑉)
6 suppun2.2 . . . 4 (𝜑𝐺𝑊)
75, 6unexd 7774 . . 3 (𝜑 → (𝐹𝐺) ∈ V)
8 suppun2.3 . . 3 (𝜑𝑍𝑋)
9 suppimacnv 8199 . . 3 (((𝐹𝐺) ∈ V ∧ 𝑍𝑋) → ((𝐹𝐺) supp 𝑍) = ((𝐹𝐺) “ (V ∖ {𝑍})))
107, 8, 9syl2anc 584 . 2 (𝜑 → ((𝐹𝐺) supp 𝑍) = ((𝐹𝐺) “ (V ∖ {𝑍})))
11 suppimacnv 8199 . . . 4 ((𝐹𝑉𝑍𝑋) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
125, 8, 11syl2anc 584 . . 3 (𝜑 → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
13 suppimacnv 8199 . . . 4 ((𝐺𝑊𝑍𝑋) → (𝐺 supp 𝑍) = (𝐺 “ (V ∖ {𝑍})))
146, 8, 13syl2anc 584 . . 3 (𝜑 → (𝐺 supp 𝑍) = (𝐺 “ (V ∖ {𝑍})))
1512, 14uneq12d 4169 . 2 (𝜑 → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) = ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐺 “ (V ∖ {𝑍}))))
164, 10, 153eqtr4a 2803 1 (𝜑 → ((𝐹𝐺) supp 𝑍) = ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3480  cdif 3948  cun 3949  {csn 4626  ccnv 5684  cima 5688  (class class class)co 7431   supp csupp 8185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-supp 8186
This theorem is referenced by:  elrgspnlem4  33249
  Copyright terms: Public domain W3C validator