Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suppun2 Structured version   Visualization version   GIF version

Theorem suppun2 32698
Description: The support of a union is the union of the supports. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
suppun2.1 (𝜑𝐹𝑉)
suppun2.2 (𝜑𝐺𝑊)
suppun2.3 (𝜑𝑍𝑋)
Assertion
Ref Expression
suppun2 (𝜑 → ((𝐹𝐺) supp 𝑍) = ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)))

Proof of Theorem suppun2
StepHypRef Expression
1 cnvun 6164 . . . 4 (𝐹𝐺) = (𝐹𝐺)
21imaeq1i 6076 . . 3 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐹𝐺) “ (V ∖ {𝑍}))
3 imaundir 6172 . . 3 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐺 “ (V ∖ {𝑍})))
42, 3eqtri 2762 . 2 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐺 “ (V ∖ {𝑍})))
5 suppun2.1 . . . 4 (𝜑𝐹𝑉)
6 suppun2.2 . . . 4 (𝜑𝐺𝑊)
75, 6unexd 7772 . . 3 (𝜑 → (𝐹𝐺) ∈ V)
8 suppun2.3 . . 3 (𝜑𝑍𝑋)
9 suppimacnv 8197 . . 3 (((𝐹𝐺) ∈ V ∧ 𝑍𝑋) → ((𝐹𝐺) supp 𝑍) = ((𝐹𝐺) “ (V ∖ {𝑍})))
107, 8, 9syl2anc 584 . 2 (𝜑 → ((𝐹𝐺) supp 𝑍) = ((𝐹𝐺) “ (V ∖ {𝑍})))
11 suppimacnv 8197 . . . 4 ((𝐹𝑉𝑍𝑋) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
125, 8, 11syl2anc 584 . . 3 (𝜑 → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
13 suppimacnv 8197 . . . 4 ((𝐺𝑊𝑍𝑋) → (𝐺 supp 𝑍) = (𝐺 “ (V ∖ {𝑍})))
146, 8, 13syl2anc 584 . . 3 (𝜑 → (𝐺 supp 𝑍) = (𝐺 “ (V ∖ {𝑍})))
1512, 14uneq12d 4178 . 2 (𝜑 → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) = ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐺 “ (V ∖ {𝑍}))))
164, 10, 153eqtr4a 2800 1 (𝜑 → ((𝐹𝐺) supp 𝑍) = ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2105  Vcvv 3477  cdif 3959  cun 3960  {csn 4630  ccnv 5687  cima 5691  (class class class)co 7430   supp csupp 8183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-supp 8184
This theorem is referenced by:  elrgspnlem4  33234
  Copyright terms: Public domain W3C validator