| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > suppun2 | Structured version Visualization version GIF version | ||
| Description: The support of a union is the union of the supports. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| Ref | Expression |
|---|---|
| suppun2.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| suppun2.2 | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| suppun2.3 | ⊢ (𝜑 → 𝑍 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| suppun2 | ⊢ (𝜑 → ((𝐹 ∪ 𝐺) supp 𝑍) = ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvun 6103 | . . . 4 ⊢ ◡(𝐹 ∪ 𝐺) = (◡𝐹 ∪ ◡𝐺) | |
| 2 | 1 | imaeq1i 6017 | . . 3 ⊢ (◡(𝐹 ∪ 𝐺) “ (V ∖ {𝑍})) = ((◡𝐹 ∪ ◡𝐺) “ (V ∖ {𝑍})) |
| 3 | imaundir 6111 | . . 3 ⊢ ((◡𝐹 ∪ ◡𝐺) “ (V ∖ {𝑍})) = ((◡𝐹 “ (V ∖ {𝑍})) ∪ (◡𝐺 “ (V ∖ {𝑍}))) | |
| 4 | 2, 3 | eqtri 2752 | . 2 ⊢ (◡(𝐹 ∪ 𝐺) “ (V ∖ {𝑍})) = ((◡𝐹 “ (V ∖ {𝑍})) ∪ (◡𝐺 “ (V ∖ {𝑍}))) |
| 5 | suppun2.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 6 | suppun2.2 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 7 | 5, 6 | unexd 7710 | . . 3 ⊢ (𝜑 → (𝐹 ∪ 𝐺) ∈ V) |
| 8 | suppun2.3 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑋) | |
| 9 | suppimacnv 8130 | . . 3 ⊢ (((𝐹 ∪ 𝐺) ∈ V ∧ 𝑍 ∈ 𝑋) → ((𝐹 ∪ 𝐺) supp 𝑍) = (◡(𝐹 ∪ 𝐺) “ (V ∖ {𝑍}))) | |
| 10 | 7, 8, 9 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐹 ∪ 𝐺) supp 𝑍) = (◡(𝐹 ∪ 𝐺) “ (V ∖ {𝑍}))) |
| 11 | suppimacnv 8130 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑋) → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) | |
| 12 | 5, 8, 11 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) |
| 13 | suppimacnv 8130 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑍 ∈ 𝑋) → (𝐺 supp 𝑍) = (◡𝐺 “ (V ∖ {𝑍}))) | |
| 14 | 6, 8, 13 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐺 supp 𝑍) = (◡𝐺 “ (V ∖ {𝑍}))) |
| 15 | 12, 14 | uneq12d 4128 | . 2 ⊢ (𝜑 → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) = ((◡𝐹 “ (V ∖ {𝑍})) ∪ (◡𝐺 “ (V ∖ {𝑍})))) |
| 16 | 4, 10, 15 | 3eqtr4a 2790 | 1 ⊢ (𝜑 → ((𝐹 ∪ 𝐺) supp 𝑍) = ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∖ cdif 3908 ∪ cun 3909 {csn 4585 ◡ccnv 5630 “ cima 5634 (class class class)co 7369 supp csupp 8116 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-supp 8117 |
| This theorem is referenced by: elrgspnlem4 33212 |
| Copyright terms: Public domain | W3C validator |