MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvelimabd Structured version   Visualization version   GIF version

Theorem fvelimabd 6995
Description: Deduction form of fvelimab 6994. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
fvelimabd.1 (𝜑𝐹 Fn 𝐴)
fvelimabd.2 (𝜑𝐵𝐴)
Assertion
Ref Expression
fvelimabd (𝜑 → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem fvelimabd
StepHypRef Expression
1 fvelimabd.1 . 2 (𝜑𝐹 Fn 𝐴)
2 fvelimabd.2 . 2 (𝜑𝐵𝐴)
3 fvelimab 6994 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
41, 2, 3syl2anc 583 1 (𝜑 → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  wrex 3076  wss 3976  cima 5703   Fn wfn 6568  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581
This theorem is referenced by:  unima  6997  ghmqusnsglem1  19320  ghmquskerlem1  19323  lmhmima  21069  mdegldg  26125  ig1peu  26234  2ndimaxp  32665  fnpreimac  32689  fsuppcurry1  32739  fsuppcurry2  32740  swrdrn3  32922  fnrelpredd  35065  bj-gabima  36906  extoimad  44126
  Copyright terms: Public domain W3C validator