| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvelimabd | Structured version Visualization version GIF version | ||
| Description: Deduction form of fvelimab 6903. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| Ref | Expression |
|---|---|
| fvelimabd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| fvelimabd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| fvelimabd | ⊢ (𝜑 → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvelimabd.1 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | fvelimabd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 3 | fvelimab 6903 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 ⊆ wss 3898 “ cima 5624 Fn wfn 6484 ‘cfv 6489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-fv 6497 |
| This theorem is referenced by: unima 6906 resf1extb 7873 ghmqusnsglem1 19200 ghmquskerlem1 19203 lmhmima 20990 mdegldg 26018 ig1peu 26127 2ndimaxp 32650 fnpreimac 32675 fsuppcurry1 32731 fsuppcurry2 32732 swrdrn3 32965 esplyfv1 33655 esplyfv 33656 esplyfval3 33658 fnrelpredd 35174 bj-gabima 37057 extoimad 44321 upgrimpths 48071 |
| Copyright terms: Public domain | W3C validator |