Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvelimabd | Structured version Visualization version GIF version |
Description: Deduction form of fvelimab 6838. (Contributed by Stanislas Polu, 9-Mar-2020.) |
Ref | Expression |
---|---|
fvelimabd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
fvelimabd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Ref | Expression |
---|---|
fvelimabd | ⊢ (𝜑 → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvelimabd.1 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | fvelimabd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
3 | fvelimab 6838 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2110 ∃wrex 3067 ⊆ wss 3892 “ cima 5593 Fn wfn 6427 ‘cfv 6432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-fv 6440 |
This theorem is referenced by: unima 6840 lmhmima 20307 mdegldg 25229 ig1peu 25334 2ndimaxp 30980 fnpreimac 31004 fsuppcurry1 31056 fsuppcurry2 31057 swrdrn3 31223 fnrelpredd 33057 bj-gabima 35124 extoimad 41745 |
Copyright terms: Public domain | W3C validator |