MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvelimabd Structured version   Visualization version   GIF version

Theorem fvelimabd 6982
Description: Deduction form of fvelimab 6981. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
fvelimabd.1 (𝜑𝐹 Fn 𝐴)
fvelimabd.2 (𝜑𝐵𝐴)
Assertion
Ref Expression
fvelimabd (𝜑 → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem fvelimabd
StepHypRef Expression
1 fvelimabd.1 . 2 (𝜑𝐹 Fn 𝐴)
2 fvelimabd.2 . 2 (𝜑𝐵𝐴)
3 fvelimab 6981 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
41, 2, 3syl2anc 584 1 (𝜑 → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  wrex 3070  wss 3951  cima 5688   Fn wfn 6556  cfv 6561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-fv 6569
This theorem is referenced by:  unima  6984  resf1extb  7956  ghmqusnsglem1  19298  ghmquskerlem1  19301  lmhmima  21046  mdegldg  26105  ig1peu  26214  2ndimaxp  32656  fnpreimac  32681  fsuppcurry1  32736  fsuppcurry2  32737  swrdrn3  32940  fnrelpredd  35103  bj-gabima  36941  extoimad  44177
  Copyright terms: Public domain W3C validator