| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvelimabd | Structured version Visualization version GIF version | ||
| Description: Deduction form of fvelimab 6899. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| Ref | Expression |
|---|---|
| fvelimabd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| fvelimabd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| fvelimabd | ⊢ (𝜑 → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvelimabd.1 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | fvelimabd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 3 | fvelimab 6899 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3905 “ cima 5626 Fn wfn 6481 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-fv 6494 |
| This theorem is referenced by: unima 6902 resf1extb 7874 ghmqusnsglem1 19177 ghmquskerlem1 19180 lmhmima 20969 mdegldg 25987 ig1peu 26096 2ndimaxp 32603 fnpreimac 32628 fsuppcurry1 32681 fsuppcurry2 32682 swrdrn3 32910 fnrelpredd 35058 bj-gabima 36916 extoimad 44140 upgrimpths 47897 |
| Copyright terms: Public domain | W3C validator |