MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvelimabd Structured version   Visualization version   GIF version

Theorem fvelimabd 6916
Description: Deduction form of fvelimab 6915. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
fvelimabd.1 (𝜑𝐹 Fn 𝐴)
fvelimabd.2 (𝜑𝐵𝐴)
Assertion
Ref Expression
fvelimabd (𝜑 → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem fvelimabd
StepHypRef Expression
1 fvelimabd.1 . 2 (𝜑𝐹 Fn 𝐴)
2 fvelimabd.2 . 2 (𝜑𝐵𝐴)
3 fvelimab 6915 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
41, 2, 3syl2anc 584 1 (𝜑 → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wrex 3053  wss 3911  cima 5634   Fn wfn 6494  cfv 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-fv 6507
This theorem is referenced by:  unima  6918  resf1extb  7890  ghmqusnsglem1  19188  ghmquskerlem1  19191  lmhmima  20930  mdegldg  25947  ig1peu  26056  2ndimaxp  32543  fnpreimac  32568  fsuppcurry1  32621  fsuppcurry2  32622  swrdrn3  32850  fnrelpredd  35052  bj-gabima  36901  extoimad  44126  upgrimpths  47882
  Copyright terms: Public domain W3C validator