Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvelimabd | Structured version Visualization version GIF version |
Description: Deduction form of fvelimab 6835. (Contributed by Stanislas Polu, 9-Mar-2020.) |
Ref | Expression |
---|---|
fvelimabd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
fvelimabd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Ref | Expression |
---|---|
fvelimabd | ⊢ (𝜑 → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvelimabd.1 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | fvelimabd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
3 | fvelimab 6835 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2109 ∃wrex 3066 ⊆ wss 3891 “ cima 5591 Fn wfn 6425 ‘cfv 6430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-fv 6438 |
This theorem is referenced by: unima 6837 lmhmima 20290 mdegldg 25212 ig1peu 25317 2ndimaxp 30963 fnpreimac 30987 fsuppcurry1 31039 fsuppcurry2 31040 swrdrn3 31206 fnrelpredd 33040 bj-gabima 35107 extoimad 41728 |
Copyright terms: Public domain | W3C validator |