MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvelimabd Structured version   Visualization version   GIF version

Theorem fvelimabd 6836
Description: Deduction form of fvelimab 6835. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
fvelimabd.1 (𝜑𝐹 Fn 𝐴)
fvelimabd.2 (𝜑𝐵𝐴)
Assertion
Ref Expression
fvelimabd (𝜑 → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem fvelimabd
StepHypRef Expression
1 fvelimabd.1 . 2 (𝜑𝐹 Fn 𝐴)
2 fvelimabd.2 . 2 (𝜑𝐵𝐴)
3 fvelimab 6835 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
41, 2, 3syl2anc 583 1 (𝜑 → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wcel 2109  wrex 3066  wss 3891  cima 5591   Fn wfn 6425  cfv 6430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-fv 6438
This theorem is referenced by:  unima  6837  lmhmima  20290  mdegldg  25212  ig1peu  25317  2ndimaxp  30963  fnpreimac  30987  fsuppcurry1  31039  fsuppcurry2  31040  swrdrn3  31206  fnrelpredd  33040  bj-gabima  35107  extoimad  41728
  Copyright terms: Public domain W3C validator