MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvelimabd Structured version   Visualization version   GIF version

Theorem fvelimabd 6839
Description: Deduction form of fvelimab 6838. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
fvelimabd.1 (𝜑𝐹 Fn 𝐴)
fvelimabd.2 (𝜑𝐵𝐴)
Assertion
Ref Expression
fvelimabd (𝜑 → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem fvelimabd
StepHypRef Expression
1 fvelimabd.1 . 2 (𝜑𝐹 Fn 𝐴)
2 fvelimabd.2 . 2 (𝜑𝐵𝐴)
3 fvelimab 6838 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
41, 2, 3syl2anc 584 1 (𝜑 → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542  wcel 2110  wrex 3067  wss 3892  cima 5593   Fn wfn 6427  cfv 6432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-fv 6440
This theorem is referenced by:  unima  6840  lmhmima  20307  mdegldg  25229  ig1peu  25334  2ndimaxp  30980  fnpreimac  31004  fsuppcurry1  31056  fsuppcurry2  31057  swrdrn3  31223  fnrelpredd  33057  bj-gabima  35124  extoimad  41745
  Copyright terms: Public domain W3C validator