MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmulpnf1n Structured version   Visualization version   GIF version

Theorem xmulpnf1n 13012
Description: Multiplication by plus infinity on the right, for negative input. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmulpnf1n ((𝐴 ∈ ℝ*𝐴 < 0) → (𝐴 ·e +∞) = -∞)

Proof of Theorem xmulpnf1n
StepHypRef Expression
1 simpl 483 . . . . 5 ((𝐴 ∈ ℝ*𝐴 < 0) → 𝐴 ∈ ℝ*)
2 pnfxr 11029 . . . . 5 +∞ ∈ ℝ*
3 xmulneg1 13003 . . . . 5 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-𝑒𝐴 ·e +∞) = -𝑒(𝐴 ·e +∞))
41, 2, 3sylancl 586 . . . 4 ((𝐴 ∈ ℝ*𝐴 < 0) → (-𝑒𝐴 ·e +∞) = -𝑒(𝐴 ·e +∞))
5 xnegcl 12947 . . . . 5 (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*)
6 xlt0neg1 12953 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 < 0 ↔ 0 < -𝑒𝐴))
76biimpa 477 . . . . 5 ((𝐴 ∈ ℝ*𝐴 < 0) → 0 < -𝑒𝐴)
8 xmulpnf1 13008 . . . . 5 ((-𝑒𝐴 ∈ ℝ* ∧ 0 < -𝑒𝐴) → (-𝑒𝐴 ·e +∞) = +∞)
95, 7, 8syl2an2r 682 . . . 4 ((𝐴 ∈ ℝ*𝐴 < 0) → (-𝑒𝐴 ·e +∞) = +∞)
104, 9eqtr3d 2780 . . 3 ((𝐴 ∈ ℝ*𝐴 < 0) → -𝑒(𝐴 ·e +∞) = +∞)
11 xnegmnf 12944 . . 3 -𝑒-∞ = +∞
1210, 11eqtr4di 2796 . 2 ((𝐴 ∈ ℝ*𝐴 < 0) → -𝑒(𝐴 ·e +∞) = -𝑒-∞)
13 xmulcl 13007 . . . 4 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ·e +∞) ∈ ℝ*)
141, 2, 13sylancl 586 . . 3 ((𝐴 ∈ ℝ*𝐴 < 0) → (𝐴 ·e +∞) ∈ ℝ*)
15 mnfxr 11032 . . 3 -∞ ∈ ℝ*
16 xneg11 12949 . . 3 (((𝐴 ·e +∞) ∈ ℝ* ∧ -∞ ∈ ℝ*) → (-𝑒(𝐴 ·e +∞) = -𝑒-∞ ↔ (𝐴 ·e +∞) = -∞))
1714, 15, 16sylancl 586 . 2 ((𝐴 ∈ ℝ*𝐴 < 0) → (-𝑒(𝐴 ·e +∞) = -𝑒-∞ ↔ (𝐴 ·e +∞) = -∞))
1812, 17mpbid 231 1 ((𝐴 ∈ ℝ*𝐴 < 0) → (𝐴 ·e +∞) = -∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106   class class class wbr 5074  (class class class)co 7275  0cc0 10871  +∞cpnf 11006  -∞cmnf 11007  *cxr 11008   < clt 11009  -𝑒cxne 12845   ·e cxmu 12847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-xneg 12848  df-xmul 12850
This theorem is referenced by:  xlemul1a  13022
  Copyright terms: Public domain W3C validator