| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xmulpnf1n | Structured version Visualization version GIF version | ||
| Description: Multiplication by plus infinity on the right, for negative input. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xmulpnf1n | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (𝐴 ·e +∞) = -∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → 𝐴 ∈ ℝ*) | |
| 2 | pnfxr 11228 | . . . . 5 ⊢ +∞ ∈ ℝ* | |
| 3 | xmulneg1 13229 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-𝑒𝐴 ·e +∞) = -𝑒(𝐴 ·e +∞)) | |
| 4 | 1, 2, 3 | sylancl 586 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (-𝑒𝐴 ·e +∞) = -𝑒(𝐴 ·e +∞)) |
| 5 | xnegcl 13173 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*) | |
| 6 | xlt0neg1 13179 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* → (𝐴 < 0 ↔ 0 < -𝑒𝐴)) | |
| 7 | 6 | biimpa 476 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → 0 < -𝑒𝐴) |
| 8 | xmulpnf1 13234 | . . . . 5 ⊢ ((-𝑒𝐴 ∈ ℝ* ∧ 0 < -𝑒𝐴) → (-𝑒𝐴 ·e +∞) = +∞) | |
| 9 | 5, 7, 8 | syl2an2r 685 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (-𝑒𝐴 ·e +∞) = +∞) |
| 10 | 4, 9 | eqtr3d 2766 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → -𝑒(𝐴 ·e +∞) = +∞) |
| 11 | xnegmnf 13170 | . . 3 ⊢ -𝑒-∞ = +∞ | |
| 12 | 10, 11 | eqtr4di 2782 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → -𝑒(𝐴 ·e +∞) = -𝑒-∞) |
| 13 | xmulcl 13233 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ·e +∞) ∈ ℝ*) | |
| 14 | 1, 2, 13 | sylancl 586 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (𝐴 ·e +∞) ∈ ℝ*) |
| 15 | mnfxr 11231 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 16 | xneg11 13175 | . . 3 ⊢ (((𝐴 ·e +∞) ∈ ℝ* ∧ -∞ ∈ ℝ*) → (-𝑒(𝐴 ·e +∞) = -𝑒-∞ ↔ (𝐴 ·e +∞) = -∞)) | |
| 17 | 14, 15, 16 | sylancl 586 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (-𝑒(𝐴 ·e +∞) = -𝑒-∞ ↔ (𝐴 ·e +∞) = -∞)) |
| 18 | 12, 17 | mpbid 232 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (𝐴 ·e +∞) = -∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 0cc0 11068 +∞cpnf 11205 -∞cmnf 11206 ℝ*cxr 11207 < clt 11208 -𝑒cxne 13069 ·e cxmu 13071 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-xneg 13072 df-xmul 13074 |
| This theorem is referenced by: xlemul1a 13248 |
| Copyright terms: Public domain | W3C validator |