![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xmulpnf1n | Structured version Visualization version GIF version |
Description: Multiplication by plus infinity on the right, for negative input. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xmulpnf1n | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (𝐴 ·e +∞) = -∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → 𝐴 ∈ ℝ*) | |
2 | pnfxr 11275 | . . . . 5 ⊢ +∞ ∈ ℝ* | |
3 | xmulneg1 13255 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-𝑒𝐴 ·e +∞) = -𝑒(𝐴 ·e +∞)) | |
4 | 1, 2, 3 | sylancl 585 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (-𝑒𝐴 ·e +∞) = -𝑒(𝐴 ·e +∞)) |
5 | xnegcl 13199 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*) | |
6 | xlt0neg1 13205 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* → (𝐴 < 0 ↔ 0 < -𝑒𝐴)) | |
7 | 6 | biimpa 476 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → 0 < -𝑒𝐴) |
8 | xmulpnf1 13260 | . . . . 5 ⊢ ((-𝑒𝐴 ∈ ℝ* ∧ 0 < -𝑒𝐴) → (-𝑒𝐴 ·e +∞) = +∞) | |
9 | 5, 7, 8 | syl2an2r 682 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (-𝑒𝐴 ·e +∞) = +∞) |
10 | 4, 9 | eqtr3d 2773 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → -𝑒(𝐴 ·e +∞) = +∞) |
11 | xnegmnf 13196 | . . 3 ⊢ -𝑒-∞ = +∞ | |
12 | 10, 11 | eqtr4di 2789 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → -𝑒(𝐴 ·e +∞) = -𝑒-∞) |
13 | xmulcl 13259 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ·e +∞) ∈ ℝ*) | |
14 | 1, 2, 13 | sylancl 585 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (𝐴 ·e +∞) ∈ ℝ*) |
15 | mnfxr 11278 | . . 3 ⊢ -∞ ∈ ℝ* | |
16 | xneg11 13201 | . . 3 ⊢ (((𝐴 ·e +∞) ∈ ℝ* ∧ -∞ ∈ ℝ*) → (-𝑒(𝐴 ·e +∞) = -𝑒-∞ ↔ (𝐴 ·e +∞) = -∞)) | |
17 | 14, 15, 16 | sylancl 585 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (-𝑒(𝐴 ·e +∞) = -𝑒-∞ ↔ (𝐴 ·e +∞) = -∞)) |
18 | 12, 17 | mpbid 231 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (𝐴 ·e +∞) = -∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 class class class wbr 5148 (class class class)co 7412 0cc0 11116 +∞cpnf 11252 -∞cmnf 11253 ℝ*cxr 11254 < clt 11255 -𝑒cxne 13096 ·e cxmu 13098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-xneg 13099 df-xmul 13101 |
This theorem is referenced by: xlemul1a 13274 |
Copyright terms: Public domain | W3C validator |