MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmulpnf1n Structured version   Visualization version   GIF version

Theorem xmulpnf1n 13321
Description: Multiplication by plus infinity on the right, for negative input. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmulpnf1n ((𝐴 ∈ ℝ*𝐴 < 0) → (𝐴 ·e +∞) = -∞)

Proof of Theorem xmulpnf1n
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝐴 ∈ ℝ*𝐴 < 0) → 𝐴 ∈ ℝ*)
2 pnfxr 11316 . . . . 5 +∞ ∈ ℝ*
3 xmulneg1 13312 . . . . 5 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-𝑒𝐴 ·e +∞) = -𝑒(𝐴 ·e +∞))
41, 2, 3sylancl 586 . . . 4 ((𝐴 ∈ ℝ*𝐴 < 0) → (-𝑒𝐴 ·e +∞) = -𝑒(𝐴 ·e +∞))
5 xnegcl 13256 . . . . 5 (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*)
6 xlt0neg1 13262 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 < 0 ↔ 0 < -𝑒𝐴))
76biimpa 476 . . . . 5 ((𝐴 ∈ ℝ*𝐴 < 0) → 0 < -𝑒𝐴)
8 xmulpnf1 13317 . . . . 5 ((-𝑒𝐴 ∈ ℝ* ∧ 0 < -𝑒𝐴) → (-𝑒𝐴 ·e +∞) = +∞)
95, 7, 8syl2an2r 685 . . . 4 ((𝐴 ∈ ℝ*𝐴 < 0) → (-𝑒𝐴 ·e +∞) = +∞)
104, 9eqtr3d 2778 . . 3 ((𝐴 ∈ ℝ*𝐴 < 0) → -𝑒(𝐴 ·e +∞) = +∞)
11 xnegmnf 13253 . . 3 -𝑒-∞ = +∞
1210, 11eqtr4di 2794 . 2 ((𝐴 ∈ ℝ*𝐴 < 0) → -𝑒(𝐴 ·e +∞) = -𝑒-∞)
13 xmulcl 13316 . . . 4 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ·e +∞) ∈ ℝ*)
141, 2, 13sylancl 586 . . 3 ((𝐴 ∈ ℝ*𝐴 < 0) → (𝐴 ·e +∞) ∈ ℝ*)
15 mnfxr 11319 . . 3 -∞ ∈ ℝ*
16 xneg11 13258 . . 3 (((𝐴 ·e +∞) ∈ ℝ* ∧ -∞ ∈ ℝ*) → (-𝑒(𝐴 ·e +∞) = -𝑒-∞ ↔ (𝐴 ·e +∞) = -∞))
1714, 15, 16sylancl 586 . 2 ((𝐴 ∈ ℝ*𝐴 < 0) → (-𝑒(𝐴 ·e +∞) = -𝑒-∞ ↔ (𝐴 ·e +∞) = -∞))
1812, 17mpbid 232 1 ((𝐴 ∈ ℝ*𝐴 < 0) → (𝐴 ·e +∞) = -∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107   class class class wbr 5142  (class class class)co 7432  0cc0 11156  +∞cpnf 11293  -∞cmnf 11294  *cxr 11295   < clt 11296  -𝑒cxne 13152   ·e cxmu 13154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-po 5591  df-so 5592  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-1st 8015  df-2nd 8016  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-xneg 13155  df-xmul 13157
This theorem is referenced by:  xlemul1a  13331
  Copyright terms: Public domain W3C validator