MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmulpnf1n Structured version   Visualization version   GIF version

Theorem xmulpnf1n 13199
Description: Multiplication by plus infinity on the right, for negative input. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmulpnf1n ((𝐴 ∈ ℝ*𝐴 < 0) → (𝐴 ·e +∞) = -∞)

Proof of Theorem xmulpnf1n
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝐴 ∈ ℝ*𝐴 < 0) → 𝐴 ∈ ℝ*)
2 pnfxr 11188 . . . . 5 +∞ ∈ ℝ*
3 xmulneg1 13190 . . . . 5 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-𝑒𝐴 ·e +∞) = -𝑒(𝐴 ·e +∞))
41, 2, 3sylancl 586 . . . 4 ((𝐴 ∈ ℝ*𝐴 < 0) → (-𝑒𝐴 ·e +∞) = -𝑒(𝐴 ·e +∞))
5 xnegcl 13134 . . . . 5 (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*)
6 xlt0neg1 13140 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 < 0 ↔ 0 < -𝑒𝐴))
76biimpa 476 . . . . 5 ((𝐴 ∈ ℝ*𝐴 < 0) → 0 < -𝑒𝐴)
8 xmulpnf1 13195 . . . . 5 ((-𝑒𝐴 ∈ ℝ* ∧ 0 < -𝑒𝐴) → (-𝑒𝐴 ·e +∞) = +∞)
95, 7, 8syl2an2r 685 . . . 4 ((𝐴 ∈ ℝ*𝐴 < 0) → (-𝑒𝐴 ·e +∞) = +∞)
104, 9eqtr3d 2766 . . 3 ((𝐴 ∈ ℝ*𝐴 < 0) → -𝑒(𝐴 ·e +∞) = +∞)
11 xnegmnf 13131 . . 3 -𝑒-∞ = +∞
1210, 11eqtr4di 2782 . 2 ((𝐴 ∈ ℝ*𝐴 < 0) → -𝑒(𝐴 ·e +∞) = -𝑒-∞)
13 xmulcl 13194 . . . 4 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ·e +∞) ∈ ℝ*)
141, 2, 13sylancl 586 . . 3 ((𝐴 ∈ ℝ*𝐴 < 0) → (𝐴 ·e +∞) ∈ ℝ*)
15 mnfxr 11191 . . 3 -∞ ∈ ℝ*
16 xneg11 13136 . . 3 (((𝐴 ·e +∞) ∈ ℝ* ∧ -∞ ∈ ℝ*) → (-𝑒(𝐴 ·e +∞) = -𝑒-∞ ↔ (𝐴 ·e +∞) = -∞))
1714, 15, 16sylancl 586 . 2 ((𝐴 ∈ ℝ*𝐴 < 0) → (-𝑒(𝐴 ·e +∞) = -𝑒-∞ ↔ (𝐴 ·e +∞) = -∞))
1812, 17mpbid 232 1 ((𝐴 ∈ ℝ*𝐴 < 0) → (𝐴 ·e +∞) = -∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5095  (class class class)co 7353  0cc0 11028  +∞cpnf 11165  -∞cmnf 11166  *cxr 11167   < clt 11168  -𝑒cxne 13030   ·e cxmu 13032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-xneg 13033  df-xmul 13035
This theorem is referenced by:  xlemul1a  13209
  Copyright terms: Public domain W3C validator