MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmulpnf1n Structured version   Visualization version   GIF version

Theorem xmulpnf1n 13184
Description: Multiplication by plus infinity on the right, for negative input. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmulpnf1n ((𝐴 ∈ ℝ*𝐴 < 0) → (𝐴 ·e +∞) = -∞)

Proof of Theorem xmulpnf1n
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝐴 ∈ ℝ*𝐴 < 0) → 𝐴 ∈ ℝ*)
2 pnfxr 11177 . . . . 5 +∞ ∈ ℝ*
3 xmulneg1 13175 . . . . 5 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-𝑒𝐴 ·e +∞) = -𝑒(𝐴 ·e +∞))
41, 2, 3sylancl 586 . . . 4 ((𝐴 ∈ ℝ*𝐴 < 0) → (-𝑒𝐴 ·e +∞) = -𝑒(𝐴 ·e +∞))
5 xnegcl 13119 . . . . 5 (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*)
6 xlt0neg1 13125 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 < 0 ↔ 0 < -𝑒𝐴))
76biimpa 476 . . . . 5 ((𝐴 ∈ ℝ*𝐴 < 0) → 0 < -𝑒𝐴)
8 xmulpnf1 13180 . . . . 5 ((-𝑒𝐴 ∈ ℝ* ∧ 0 < -𝑒𝐴) → (-𝑒𝐴 ·e +∞) = +∞)
95, 7, 8syl2an2r 685 . . . 4 ((𝐴 ∈ ℝ*𝐴 < 0) → (-𝑒𝐴 ·e +∞) = +∞)
104, 9eqtr3d 2770 . . 3 ((𝐴 ∈ ℝ*𝐴 < 0) → -𝑒(𝐴 ·e +∞) = +∞)
11 xnegmnf 13116 . . 3 -𝑒-∞ = +∞
1210, 11eqtr4di 2786 . 2 ((𝐴 ∈ ℝ*𝐴 < 0) → -𝑒(𝐴 ·e +∞) = -𝑒-∞)
13 xmulcl 13179 . . . 4 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ·e +∞) ∈ ℝ*)
141, 2, 13sylancl 586 . . 3 ((𝐴 ∈ ℝ*𝐴 < 0) → (𝐴 ·e +∞) ∈ ℝ*)
15 mnfxr 11180 . . 3 -∞ ∈ ℝ*
16 xneg11 13121 . . 3 (((𝐴 ·e +∞) ∈ ℝ* ∧ -∞ ∈ ℝ*) → (-𝑒(𝐴 ·e +∞) = -𝑒-∞ ↔ (𝐴 ·e +∞) = -∞))
1714, 15, 16sylancl 586 . 2 ((𝐴 ∈ ℝ*𝐴 < 0) → (-𝑒(𝐴 ·e +∞) = -𝑒-∞ ↔ (𝐴 ·e +∞) = -∞))
1812, 17mpbid 232 1 ((𝐴 ∈ ℝ*𝐴 < 0) → (𝐴 ·e +∞) = -∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113   class class class wbr 5095  (class class class)co 7355  0cc0 11017  +∞cpnf 11154  -∞cmnf 11155  *cxr 11156   < clt 11157  -𝑒cxne 13014   ·e cxmu 13016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-xneg 13017  df-xmul 13019
This theorem is referenced by:  xlemul1a  13194
  Copyright terms: Public domain W3C validator