| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xmulpnf1n | Structured version Visualization version GIF version | ||
| Description: Multiplication by plus infinity on the right, for negative input. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xmulpnf1n | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (𝐴 ·e +∞) = -∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → 𝐴 ∈ ℝ*) | |
| 2 | pnfxr 11204 | . . . . 5 ⊢ +∞ ∈ ℝ* | |
| 3 | xmulneg1 13205 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-𝑒𝐴 ·e +∞) = -𝑒(𝐴 ·e +∞)) | |
| 4 | 1, 2, 3 | sylancl 586 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (-𝑒𝐴 ·e +∞) = -𝑒(𝐴 ·e +∞)) |
| 5 | xnegcl 13149 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*) | |
| 6 | xlt0neg1 13155 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* → (𝐴 < 0 ↔ 0 < -𝑒𝐴)) | |
| 7 | 6 | biimpa 476 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → 0 < -𝑒𝐴) |
| 8 | xmulpnf1 13210 | . . . . 5 ⊢ ((-𝑒𝐴 ∈ ℝ* ∧ 0 < -𝑒𝐴) → (-𝑒𝐴 ·e +∞) = +∞) | |
| 9 | 5, 7, 8 | syl2an2r 685 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (-𝑒𝐴 ·e +∞) = +∞) |
| 10 | 4, 9 | eqtr3d 2766 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → -𝑒(𝐴 ·e +∞) = +∞) |
| 11 | xnegmnf 13146 | . . 3 ⊢ -𝑒-∞ = +∞ | |
| 12 | 10, 11 | eqtr4di 2782 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → -𝑒(𝐴 ·e +∞) = -𝑒-∞) |
| 13 | xmulcl 13209 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ·e +∞) ∈ ℝ*) | |
| 14 | 1, 2, 13 | sylancl 586 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (𝐴 ·e +∞) ∈ ℝ*) |
| 15 | mnfxr 11207 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 16 | xneg11 13151 | . . 3 ⊢ (((𝐴 ·e +∞) ∈ ℝ* ∧ -∞ ∈ ℝ*) → (-𝑒(𝐴 ·e +∞) = -𝑒-∞ ↔ (𝐴 ·e +∞) = -∞)) | |
| 17 | 14, 15, 16 | sylancl 586 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (-𝑒(𝐴 ·e +∞) = -𝑒-∞ ↔ (𝐴 ·e +∞) = -∞)) |
| 18 | 12, 17 | mpbid 232 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (𝐴 ·e +∞) = -∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 (class class class)co 7369 0cc0 11044 +∞cpnf 11181 -∞cmnf 11182 ℝ*cxr 11183 < clt 11184 -𝑒cxne 13045 ·e cxmu 13047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-xneg 13048 df-xmul 13050 |
| This theorem is referenced by: xlemul1a 13224 |
| Copyright terms: Public domain | W3C validator |