Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrgtnelicc Structured version   Visualization version   GIF version

Theorem xrgtnelicc 43305
Description: A real number greater than the upper bound of a closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
xrgtnelicc.1 (𝜑𝐴 ∈ ℝ*)
xrgtnelicc.2 (𝜑𝐵 ∈ ℝ*)
xrgtnelicc.3 (𝜑𝐶 ∈ ℝ*)
xrgtnelicc.4 (𝜑𝐵 < 𝐶)
Assertion
Ref Expression
xrgtnelicc (𝜑 → ¬ 𝐶 ∈ (𝐴[,]𝐵))

Proof of Theorem xrgtnelicc
StepHypRef Expression
1 xrgtnelicc.4 . . . 4 (𝜑𝐵 < 𝐶)
2 xrgtnelicc.2 . . . . 5 (𝜑𝐵 ∈ ℝ*)
3 xrgtnelicc.3 . . . . 5 (𝜑𝐶 ∈ ℝ*)
4 xrltnle 11092 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 < 𝐶 ↔ ¬ 𝐶𝐵))
52, 3, 4syl2anc 585 . . . 4 (𝜑 → (𝐵 < 𝐶 ↔ ¬ 𝐶𝐵))
61, 5mpbid 231 . . 3 (𝜑 → ¬ 𝐶𝐵)
76intnand 490 . 2 (𝜑 → ¬ (𝐴𝐶𝐶𝐵))
8 xrgtnelicc.1 . . 3 (𝜑𝐴 ∈ ℝ*)
9 elicc4 13196 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴𝐶𝐶𝐵)))
108, 2, 3, 9syl3anc 1371 . 2 (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴𝐶𝐶𝐵)))
117, 10mtbird 325 1 (𝜑 → ¬ 𝐶 ∈ (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wcel 2104   class class class wbr 5081  (class class class)co 7307  *cxr 11058   < clt 11059  cle 11060  [,]cicc 13132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-un 7620  ax-cnex 10977  ax-resscn 10978
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ral 3063  df-rex 3072  df-rab 3306  df-v 3439  df-sbc 3722  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-iota 6410  df-fun 6460  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-xr 11063  df-le 11065  df-icc 13136
This theorem is referenced by:  iccdificc  43306
  Copyright terms: Public domain W3C validator