Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrgtnelicc | Structured version Visualization version GIF version |
Description: A real number greater than the upper bound of a closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
xrgtnelicc.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrgtnelicc.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
xrgtnelicc.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
xrgtnelicc.4 | ⊢ (𝜑 → 𝐵 < 𝐶) |
Ref | Expression |
---|---|
xrgtnelicc | ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴[,]𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrgtnelicc.4 | . . . 4 ⊢ (𝜑 → 𝐵 < 𝐶) | |
2 | xrgtnelicc.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
3 | xrgtnelicc.3 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
4 | xrltnle 11026 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 < 𝐶 ↔ ¬ 𝐶 ≤ 𝐵)) | |
5 | 2, 3, 4 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝐵 < 𝐶 ↔ ¬ 𝐶 ≤ 𝐵)) |
6 | 1, 5 | mpbid 231 | . . 3 ⊢ (𝜑 → ¬ 𝐶 ≤ 𝐵) |
7 | 6 | intnand 488 | . 2 ⊢ (𝜑 → ¬ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
8 | xrgtnelicc.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
9 | elicc4 13128 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
10 | 8, 2, 3, 9 | syl3anc 1369 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
11 | 7, 10 | mtbird 324 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴[,]𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2109 class class class wbr 5078 (class class class)co 7268 ℝ*cxr 10992 < clt 10993 ≤ cle 10994 [,]cicc 13064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-iota 6388 df-fun 6432 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-xr 10997 df-le 10999 df-icc 13068 |
This theorem is referenced by: iccdificc 43031 |
Copyright terms: Public domain | W3C validator |