Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrgtnelicc Structured version   Visualization version   GIF version

Theorem xrgtnelicc 43030
Description: A real number greater than the upper bound of a closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
xrgtnelicc.1 (𝜑𝐴 ∈ ℝ*)
xrgtnelicc.2 (𝜑𝐵 ∈ ℝ*)
xrgtnelicc.3 (𝜑𝐶 ∈ ℝ*)
xrgtnelicc.4 (𝜑𝐵 < 𝐶)
Assertion
Ref Expression
xrgtnelicc (𝜑 → ¬ 𝐶 ∈ (𝐴[,]𝐵))

Proof of Theorem xrgtnelicc
StepHypRef Expression
1 xrgtnelicc.4 . . . 4 (𝜑𝐵 < 𝐶)
2 xrgtnelicc.2 . . . . 5 (𝜑𝐵 ∈ ℝ*)
3 xrgtnelicc.3 . . . . 5 (𝜑𝐶 ∈ ℝ*)
4 xrltnle 11026 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 < 𝐶 ↔ ¬ 𝐶𝐵))
52, 3, 4syl2anc 583 . . . 4 (𝜑 → (𝐵 < 𝐶 ↔ ¬ 𝐶𝐵))
61, 5mpbid 231 . . 3 (𝜑 → ¬ 𝐶𝐵)
76intnand 488 . 2 (𝜑 → ¬ (𝐴𝐶𝐶𝐵))
8 xrgtnelicc.1 . . 3 (𝜑𝐴 ∈ ℝ*)
9 elicc4 13128 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴𝐶𝐶𝐵)))
108, 2, 3, 9syl3anc 1369 . 2 (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴𝐶𝐶𝐵)))
117, 10mtbird 324 1 (𝜑 → ¬ 𝐶 ∈ (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wcel 2109   class class class wbr 5078  (class class class)co 7268  *cxr 10992   < clt 10993  cle 10994  [,]cicc 13064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-iota 6388  df-fun 6432  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-xr 10997  df-le 10999  df-icc 13068
This theorem is referenced by:  iccdificc  43031
  Copyright terms: Public domain W3C validator