MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elicc4 Structured version   Visualization version   GIF version

Theorem elicc4 13392
Description: Membership in a closed real interval. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Proof shortened by Mario Carneiro, 1-Jan-2017.)
Assertion
Ref Expression
elicc4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴𝐶𝐶𝐵)))

Proof of Theorem elicc4
StepHypRef Expression
1 elicc1 13369 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
2 3anass 1092 . . . 4 ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) ↔ (𝐶 ∈ ℝ* ∧ (𝐴𝐶𝐶𝐵)))
31, 2bitrdi 287 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ (𝐴𝐶𝐶𝐵))))
43baibd 539 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴𝐶𝐶𝐵)))
543impa 1107 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴𝐶𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084  wcel 2098   class class class wbr 5139  (class class class)co 7402  *cxr 11246  cle 11248  [,]cicc 13328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3771  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-iota 6486  df-fun 6536  df-fv 6542  df-ov 7405  df-oprab 7406  df-mpo 7407  df-xr 11251  df-icc 13332
This theorem is referenced by:  elicc4abs  15268  xrge0addass  32682  esumle  33576  esumlef  33580  sin2h  36982  cos2h  36983  tan2h  36984  ltnelicc  44756  gtnelicc  44759  eliccxrd  44786  xrgtnelicc  44797  limciccioolb  44883  fourierdlem1  45370
  Copyright terms: Public domain W3C validator