Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccdificc Structured version   Visualization version   GIF version

Theorem iccdificc 45537
Description: The difference of two closed intervals with the same lower bound. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
iccdificc.a (𝜑𝐴 ∈ ℝ*)
iccdificc.b (𝜑𝐵 ∈ ℝ*)
iccdificc.c (𝜑𝐶 ∈ ℝ*)
iccdificc.4 (𝜑𝐴𝐵)
Assertion
Ref Expression
iccdificc (𝜑 → ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) = (𝐵(,]𝐶))

Proof of Theorem iccdificc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iccdificc.b . . . . . 6 (𝜑𝐵 ∈ ℝ*)
21adantr 480 . . . . 5 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝐵 ∈ ℝ*)
3 iccdificc.c . . . . . 6 (𝜑𝐶 ∈ ℝ*)
43adantr 480 . . . . 5 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝐶 ∈ ℝ*)
5 iccssxr 13391 . . . . . . 7 (𝐴[,]𝐶) ⊆ ℝ*
6 eldifi 4094 . . . . . . 7 (𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐶))
75, 6sselid 3944 . . . . . 6 (𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ*)
87adantl 481 . . . . 5 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝑥 ∈ ℝ*)
9 iccdificc.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
109ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → 𝐴 ∈ ℝ*)
112adantr 480 . . . . . . 7 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → 𝐵 ∈ ℝ*)
128adantr 480 . . . . . . 7 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → 𝑥 ∈ ℝ*)
139adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝐴 ∈ ℝ*)
146adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝑥 ∈ (𝐴[,]𝐶))
15 iccgelb 13363 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐴[,]𝐶)) → 𝐴𝑥)
1613, 4, 14, 15syl3anc 1373 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝐴𝑥)
1716adantr 480 . . . . . . 7 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → 𝐴𝑥)
18 simpr 484 . . . . . . . 8 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → ¬ 𝐵 < 𝑥)
198, 2xrlenltd 11240 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → (𝑥𝐵 ↔ ¬ 𝐵 < 𝑥))
2019adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → (𝑥𝐵 ↔ ¬ 𝐵 < 𝑥))
2118, 20mpbird 257 . . . . . . 7 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → 𝑥𝐵)
2210, 11, 12, 17, 21eliccxrd 45525 . . . . . 6 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → 𝑥 ∈ (𝐴[,]𝐵))
23 eldifn 4095 . . . . . . 7 (𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) → ¬ 𝑥 ∈ (𝐴[,]𝐵))
2423ad2antlr 727 . . . . . 6 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → ¬ 𝑥 ∈ (𝐴[,]𝐵))
2522, 24condan 817 . . . . 5 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝐵 < 𝑥)
26 iccleub 13362 . . . . . 6 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐴[,]𝐶)) → 𝑥𝐶)
2713, 4, 14, 26syl3anc 1373 . . . . 5 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝑥𝐶)
282, 4, 8, 25, 27eliocd 45505 . . . 4 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝑥 ∈ (𝐵(,]𝐶))
2928ralrimiva 3125 . . 3 (𝜑 → ∀𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))𝑥 ∈ (𝐵(,]𝐶))
30 dfss3 3935 . . 3 (((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) ⊆ (𝐵(,]𝐶) ↔ ∀𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))𝑥 ∈ (𝐵(,]𝐶))
3129, 30sylibr 234 . 2 (𝜑 → ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) ⊆ (𝐵(,]𝐶))
329adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐴 ∈ ℝ*)
333adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐶 ∈ ℝ*)
34 iocssxr 13392 . . . . . 6 (𝐵(,]𝐶) ⊆ ℝ*
35 id 22 . . . . . 6 (𝑥 ∈ (𝐵(,]𝐶) → 𝑥 ∈ (𝐵(,]𝐶))
3634, 35sselid 3944 . . . . 5 (𝑥 ∈ (𝐵(,]𝐶) → 𝑥 ∈ ℝ*)
3736adantl 481 . . . 4 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ ℝ*)
381adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐵 ∈ ℝ*)
39 iccdificc.4 . . . . . . 7 (𝜑𝐴𝐵)
4039adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐴𝐵)
41 simpr 484 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ (𝐵(,]𝐶))
42 iocgtlb 45500 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵(,]𝐶)) → 𝐵 < 𝑥)
4338, 33, 41, 42syl3anc 1373 . . . . . 6 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐵 < 𝑥)
4432, 38, 37, 40, 43xrlelttrd 13120 . . . . 5 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐴 < 𝑥)
4532, 37, 44xrltled 13110 . . . 4 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐴𝑥)
46 iocleub 45501 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵(,]𝐶)) → 𝑥𝐶)
4738, 33, 41, 46syl3anc 1373 . . . 4 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥𝐶)
4832, 33, 37, 45, 47eliccxrd 45525 . . 3 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ (𝐴[,]𝐶))
4932, 38, 37, 43xrgtnelicc 45536 . . 3 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → ¬ 𝑥 ∈ (𝐴[,]𝐵))
5048, 49eldifd 3925 . 2 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)))
5131, 50eqelssd 3968 1 (𝜑 → ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) = (𝐵(,]𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  cdif 3911  wss 3914   class class class wbr 5107  (class class class)co 7387  *cxr 11207   < clt 11208  cle 11209  (,]cioc 13307  [,]cicc 13309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-ioc 13311  df-icc 13313
This theorem is referenced by:  salexct2  46337
  Copyright terms: Public domain W3C validator