| Step | Hyp | Ref
| Expression |
| 1 | | iccdificc.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
| 2 | 1 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝐵 ∈
ℝ*) |
| 3 | | iccdificc.c |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈
ℝ*) |
| 4 | 3 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝐶 ∈
ℝ*) |
| 5 | | iccssxr 13452 |
. . . . . . 7
⊢ (𝐴[,]𝐶) ⊆
ℝ* |
| 6 | | eldifi 4111 |
. . . . . . 7
⊢ (𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐶)) |
| 7 | 5, 6 | sselid 3961 |
. . . . . 6
⊢ (𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ*) |
| 8 | 7 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝑥 ∈ ℝ*) |
| 9 | | iccdificc.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
| 10 | 9 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → 𝐴 ∈
ℝ*) |
| 11 | 2 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → 𝐵 ∈
ℝ*) |
| 12 | 8 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → 𝑥 ∈ ℝ*) |
| 13 | 9 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝐴 ∈
ℝ*) |
| 14 | 6 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝑥 ∈ (𝐴[,]𝐶)) |
| 15 | | iccgelb 13424 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ*
∧ 𝐶 ∈
ℝ* ∧ 𝑥
∈ (𝐴[,]𝐶)) → 𝐴 ≤ 𝑥) |
| 16 | 13, 4, 14, 15 | syl3anc 1373 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝐴 ≤ 𝑥) |
| 17 | 16 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → 𝐴 ≤ 𝑥) |
| 18 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → ¬ 𝐵 < 𝑥) |
| 19 | 8, 2 | xrlenltd 11306 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → (𝑥 ≤ 𝐵 ↔ ¬ 𝐵 < 𝑥)) |
| 20 | 19 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → (𝑥 ≤ 𝐵 ↔ ¬ 𝐵 < 𝑥)) |
| 21 | 18, 20 | mpbird 257 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → 𝑥 ≤ 𝐵) |
| 22 | 10, 11, 12, 17, 21 | eliccxrd 45523 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → 𝑥 ∈ (𝐴[,]𝐵)) |
| 23 | | eldifn 4112 |
. . . . . . 7
⊢ (𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) → ¬ 𝑥 ∈ (𝐴[,]𝐵)) |
| 24 | 23 | ad2antlr 727 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → ¬ 𝑥 ∈ (𝐴[,]𝐵)) |
| 25 | 22, 24 | condan 817 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝐵 < 𝑥) |
| 26 | | iccleub 13423 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐶 ∈
ℝ* ∧ 𝑥
∈ (𝐴[,]𝐶)) → 𝑥 ≤ 𝐶) |
| 27 | 13, 4, 14, 26 | syl3anc 1373 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝑥 ≤ 𝐶) |
| 28 | 2, 4, 8, 25, 27 | eliocd 45503 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝑥 ∈ (𝐵(,]𝐶)) |
| 29 | 28 | ralrimiva 3133 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))𝑥 ∈ (𝐵(,]𝐶)) |
| 30 | | dfss3 3952 |
. . 3
⊢ (((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) ⊆ (𝐵(,]𝐶) ↔ ∀𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))𝑥 ∈ (𝐵(,]𝐶)) |
| 31 | 29, 30 | sylibr 234 |
. 2
⊢ (𝜑 → ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) ⊆ (𝐵(,]𝐶)) |
| 32 | 9 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵(,]𝐶)) → 𝐴 ∈
ℝ*) |
| 33 | 3 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵(,]𝐶)) → 𝐶 ∈
ℝ*) |
| 34 | | iocssxr 13453 |
. . . . . 6
⊢ (𝐵(,]𝐶) ⊆
ℝ* |
| 35 | | id 22 |
. . . . . 6
⊢ (𝑥 ∈ (𝐵(,]𝐶) → 𝑥 ∈ (𝐵(,]𝐶)) |
| 36 | 34, 35 | sselid 3961 |
. . . . 5
⊢ (𝑥 ∈ (𝐵(,]𝐶) → 𝑥 ∈ ℝ*) |
| 37 | 36 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ ℝ*) |
| 38 | 1 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵(,]𝐶)) → 𝐵 ∈
ℝ*) |
| 39 | | iccdificc.4 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| 40 | 39 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵(,]𝐶)) → 𝐴 ≤ 𝐵) |
| 41 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ (𝐵(,]𝐶)) |
| 42 | | iocgtlb 45498 |
. . . . . . 7
⊢ ((𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ* ∧ 𝑥
∈ (𝐵(,]𝐶)) → 𝐵 < 𝑥) |
| 43 | 38, 33, 41, 42 | syl3anc 1373 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵(,]𝐶)) → 𝐵 < 𝑥) |
| 44 | 32, 38, 37, 40, 43 | xrlelttrd 13181 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵(,]𝐶)) → 𝐴 < 𝑥) |
| 45 | 32, 37, 44 | xrltled 13171 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵(,]𝐶)) → 𝐴 ≤ 𝑥) |
| 46 | | iocleub 45499 |
. . . . 5
⊢ ((𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ* ∧ 𝑥
∈ (𝐵(,]𝐶)) → 𝑥 ≤ 𝐶) |
| 47 | 38, 33, 41, 46 | syl3anc 1373 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ≤ 𝐶) |
| 48 | 32, 33, 37, 45, 47 | eliccxrd 45523 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ (𝐴[,]𝐶)) |
| 49 | 32, 38, 37, 43 | xrgtnelicc 45534 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵(,]𝐶)) → ¬ 𝑥 ∈ (𝐴[,]𝐵)) |
| 50 | 48, 49 | eldifd 3942 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) |
| 51 | 31, 50 | eqelssd 3985 |
1
⊢ (𝜑 → ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) = (𝐵(,]𝐶)) |