Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccdificc Structured version   Visualization version   GIF version

Theorem iccdificc 41900
Description: The difference of two closed intervals with the same lower bound. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
iccdificc.a (𝜑𝐴 ∈ ℝ*)
iccdificc.b (𝜑𝐵 ∈ ℝ*)
iccdificc.c (𝜑𝐶 ∈ ℝ*)
iccdificc.4 (𝜑𝐴𝐵)
Assertion
Ref Expression
iccdificc (𝜑 → ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) = (𝐵(,]𝐶))

Proof of Theorem iccdificc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iccdificc.b . . . . . 6 (𝜑𝐵 ∈ ℝ*)
21adantr 483 . . . . 5 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝐵 ∈ ℝ*)
3 iccdificc.c . . . . . 6 (𝜑𝐶 ∈ ℝ*)
43adantr 483 . . . . 5 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝐶 ∈ ℝ*)
5 iccssxr 12801 . . . . . . 7 (𝐴[,]𝐶) ⊆ ℝ*
6 eldifi 4086 . . . . . . 7 (𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐶))
75, 6sseldi 3948 . . . . . 6 (𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ*)
87adantl 484 . . . . 5 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝑥 ∈ ℝ*)
9 iccdificc.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
109ad2antrr 724 . . . . . . 7 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → 𝐴 ∈ ℝ*)
112adantr 483 . . . . . . 7 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → 𝐵 ∈ ℝ*)
128adantr 483 . . . . . . 7 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → 𝑥 ∈ ℝ*)
139adantr 483 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝐴 ∈ ℝ*)
146adantl 484 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝑥 ∈ (𝐴[,]𝐶))
15 iccgelb 12775 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐴[,]𝐶)) → 𝐴𝑥)
1613, 4, 14, 15syl3anc 1367 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝐴𝑥)
1716adantr 483 . . . . . . 7 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → 𝐴𝑥)
18 simpr 487 . . . . . . . 8 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → ¬ 𝐵 < 𝑥)
198, 2xrlenltd 10688 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → (𝑥𝐵 ↔ ¬ 𝐵 < 𝑥))
2019adantr 483 . . . . . . . 8 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → (𝑥𝐵 ↔ ¬ 𝐵 < 𝑥))
2118, 20mpbird 259 . . . . . . 7 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → 𝑥𝐵)
2210, 11, 12, 17, 21eliccxrd 41888 . . . . . 6 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → 𝑥 ∈ (𝐴[,]𝐵))
23 eldifn 4087 . . . . . . 7 (𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) → ¬ 𝑥 ∈ (𝐴[,]𝐵))
2423ad2antlr 725 . . . . . 6 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → ¬ 𝑥 ∈ (𝐴[,]𝐵))
2522, 24condan 816 . . . . 5 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝐵 < 𝑥)
26 iccleub 12774 . . . . . 6 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐴[,]𝐶)) → 𝑥𝐶)
2713, 4, 14, 26syl3anc 1367 . . . . 5 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝑥𝐶)
282, 4, 8, 25, 27eliocd 41868 . . . 4 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝑥 ∈ (𝐵(,]𝐶))
2928ralrimiva 3177 . . 3 (𝜑 → ∀𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))𝑥 ∈ (𝐵(,]𝐶))
30 dfss3 3939 . . 3 (((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) ⊆ (𝐵(,]𝐶) ↔ ∀𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))𝑥 ∈ (𝐵(,]𝐶))
3129, 30sylibr 236 . 2 (𝜑 → ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) ⊆ (𝐵(,]𝐶))
329adantr 483 . . . 4 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐴 ∈ ℝ*)
333adantr 483 . . . 4 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐶 ∈ ℝ*)
34 iocssxr 12802 . . . . . 6 (𝐵(,]𝐶) ⊆ ℝ*
35 id 22 . . . . . 6 (𝑥 ∈ (𝐵(,]𝐶) → 𝑥 ∈ (𝐵(,]𝐶))
3634, 35sseldi 3948 . . . . 5 (𝑥 ∈ (𝐵(,]𝐶) → 𝑥 ∈ ℝ*)
3736adantl 484 . . . 4 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ ℝ*)
381adantr 483 . . . . . 6 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐵 ∈ ℝ*)
39 iccdificc.4 . . . . . . 7 (𝜑𝐴𝐵)
4039adantr 483 . . . . . 6 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐴𝐵)
41 simpr 487 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ (𝐵(,]𝐶))
42 iocgtlb 41862 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵(,]𝐶)) → 𝐵 < 𝑥)
4338, 33, 41, 42syl3anc 1367 . . . . . 6 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐵 < 𝑥)
4432, 38, 37, 40, 43xrlelttrd 12535 . . . . 5 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐴 < 𝑥)
4532, 37, 44xrltled 12525 . . . 4 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐴𝑥)
46 iocleub 41863 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵(,]𝐶)) → 𝑥𝐶)
4738, 33, 41, 46syl3anc 1367 . . . 4 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥𝐶)
4832, 33, 37, 45, 47eliccxrd 41888 . . 3 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ (𝐴[,]𝐶))
4932, 38, 37, 43xrgtnelicc 41899 . . 3 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → ¬ 𝑥 ∈ (𝐴[,]𝐵))
5048, 49eldifd 3930 . 2 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)))
5131, 50eqelssd 3971 1 (𝜑 → ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) = (𝐵(,]𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3133  cdif 3916  wss 3919   class class class wbr 5047  (class class class)co 7137  *cxr 10655   < clt 10656  cle 10657  (,]cioc 12721  [,]cicc 12723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7442  ax-cnex 10574  ax-resscn 10575  ax-pre-lttri 10592  ax-pre-lttrn 10593
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3012  df-nel 3119  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3483  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4820  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-id 5441  df-po 5455  df-so 5456  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-ov 7140  df-oprab 7141  df-mpo 7142  df-1st 7670  df-2nd 7671  df-er 8270  df-en 8491  df-dom 8492  df-sdom 8493  df-pnf 10658  df-mnf 10659  df-xr 10660  df-ltxr 10661  df-le 10662  df-ioc 12725  df-icc 12727
This theorem is referenced by:  salexct2  42707
  Copyright terms: Public domain W3C validator