Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccdificc Structured version   Visualization version   GIF version

Theorem iccdificc 45457
Description: The difference of two closed intervals with the same lower bound. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
iccdificc.a (𝜑𝐴 ∈ ℝ*)
iccdificc.b (𝜑𝐵 ∈ ℝ*)
iccdificc.c (𝜑𝐶 ∈ ℝ*)
iccdificc.4 (𝜑𝐴𝐵)
Assertion
Ref Expression
iccdificc (𝜑 → ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) = (𝐵(,]𝐶))

Proof of Theorem iccdificc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iccdificc.b . . . . . 6 (𝜑𝐵 ∈ ℝ*)
21adantr 480 . . . . 5 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝐵 ∈ ℝ*)
3 iccdificc.c . . . . . 6 (𝜑𝐶 ∈ ℝ*)
43adantr 480 . . . . 5 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝐶 ∈ ℝ*)
5 iccssxr 13490 . . . . . . 7 (𝐴[,]𝐶) ⊆ ℝ*
6 eldifi 4154 . . . . . . 7 (𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐶))
75, 6sselid 4006 . . . . . 6 (𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ*)
87adantl 481 . . . . 5 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝑥 ∈ ℝ*)
9 iccdificc.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
109ad2antrr 725 . . . . . . 7 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → 𝐴 ∈ ℝ*)
112adantr 480 . . . . . . 7 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → 𝐵 ∈ ℝ*)
128adantr 480 . . . . . . 7 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → 𝑥 ∈ ℝ*)
139adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝐴 ∈ ℝ*)
146adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝑥 ∈ (𝐴[,]𝐶))
15 iccgelb 13463 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐴[,]𝐶)) → 𝐴𝑥)
1613, 4, 14, 15syl3anc 1371 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝐴𝑥)
1716adantr 480 . . . . . . 7 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → 𝐴𝑥)
18 simpr 484 . . . . . . . 8 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → ¬ 𝐵 < 𝑥)
198, 2xrlenltd 11356 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → (𝑥𝐵 ↔ ¬ 𝐵 < 𝑥))
2019adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → (𝑥𝐵 ↔ ¬ 𝐵 < 𝑥))
2118, 20mpbird 257 . . . . . . 7 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → 𝑥𝐵)
2210, 11, 12, 17, 21eliccxrd 45445 . . . . . 6 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → 𝑥 ∈ (𝐴[,]𝐵))
23 eldifn 4155 . . . . . . 7 (𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) → ¬ 𝑥 ∈ (𝐴[,]𝐵))
2423ad2antlr 726 . . . . . 6 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → ¬ 𝑥 ∈ (𝐴[,]𝐵))
2522, 24condan 817 . . . . 5 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝐵 < 𝑥)
26 iccleub 13462 . . . . . 6 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐴[,]𝐶)) → 𝑥𝐶)
2713, 4, 14, 26syl3anc 1371 . . . . 5 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝑥𝐶)
282, 4, 8, 25, 27eliocd 45425 . . . 4 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝑥 ∈ (𝐵(,]𝐶))
2928ralrimiva 3152 . . 3 (𝜑 → ∀𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))𝑥 ∈ (𝐵(,]𝐶))
30 dfss3 3997 . . 3 (((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) ⊆ (𝐵(,]𝐶) ↔ ∀𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))𝑥 ∈ (𝐵(,]𝐶))
3129, 30sylibr 234 . 2 (𝜑 → ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) ⊆ (𝐵(,]𝐶))
329adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐴 ∈ ℝ*)
333adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐶 ∈ ℝ*)
34 iocssxr 13491 . . . . . 6 (𝐵(,]𝐶) ⊆ ℝ*
35 id 22 . . . . . 6 (𝑥 ∈ (𝐵(,]𝐶) → 𝑥 ∈ (𝐵(,]𝐶))
3634, 35sselid 4006 . . . . 5 (𝑥 ∈ (𝐵(,]𝐶) → 𝑥 ∈ ℝ*)
3736adantl 481 . . . 4 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ ℝ*)
381adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐵 ∈ ℝ*)
39 iccdificc.4 . . . . . . 7 (𝜑𝐴𝐵)
4039adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐴𝐵)
41 simpr 484 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ (𝐵(,]𝐶))
42 iocgtlb 45420 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵(,]𝐶)) → 𝐵 < 𝑥)
4338, 33, 41, 42syl3anc 1371 . . . . . 6 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐵 < 𝑥)
4432, 38, 37, 40, 43xrlelttrd 13222 . . . . 5 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐴 < 𝑥)
4532, 37, 44xrltled 13212 . . . 4 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐴𝑥)
46 iocleub 45421 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵(,]𝐶)) → 𝑥𝐶)
4738, 33, 41, 46syl3anc 1371 . . . 4 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥𝐶)
4832, 33, 37, 45, 47eliccxrd 45445 . . 3 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ (𝐴[,]𝐶))
4932, 38, 37, 43xrgtnelicc 45456 . . 3 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → ¬ 𝑥 ∈ (𝐴[,]𝐵))
5048, 49eldifd 3987 . 2 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)))
5131, 50eqelssd 4030 1 (𝜑 → ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) = (𝐵(,]𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  cdif 3973  wss 3976   class class class wbr 5166  (class class class)co 7448  *cxr 11323   < clt 11324  cle 11325  (,]cioc 13408  [,]cicc 13410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-ioc 13412  df-icc 13414
This theorem is referenced by:  salexct2  46260
  Copyright terms: Public domain W3C validator