Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccdificc Structured version   Visualization version   GIF version

Theorem iccdificc 43767
Description: The difference of two closed intervals with the same lower bound. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
iccdificc.a (𝜑𝐴 ∈ ℝ*)
iccdificc.b (𝜑𝐵 ∈ ℝ*)
iccdificc.c (𝜑𝐶 ∈ ℝ*)
iccdificc.4 (𝜑𝐴𝐵)
Assertion
Ref Expression
iccdificc (𝜑 → ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) = (𝐵(,]𝐶))

Proof of Theorem iccdificc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iccdificc.b . . . . . 6 (𝜑𝐵 ∈ ℝ*)
21adantr 481 . . . . 5 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝐵 ∈ ℝ*)
3 iccdificc.c . . . . . 6 (𝜑𝐶 ∈ ℝ*)
43adantr 481 . . . . 5 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝐶 ∈ ℝ*)
5 iccssxr 13347 . . . . . . 7 (𝐴[,]𝐶) ⊆ ℝ*
6 eldifi 4086 . . . . . . 7 (𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐶))
75, 6sselid 3942 . . . . . 6 (𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ*)
87adantl 482 . . . . 5 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝑥 ∈ ℝ*)
9 iccdificc.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
109ad2antrr 724 . . . . . . 7 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → 𝐴 ∈ ℝ*)
112adantr 481 . . . . . . 7 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → 𝐵 ∈ ℝ*)
128adantr 481 . . . . . . 7 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → 𝑥 ∈ ℝ*)
139adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝐴 ∈ ℝ*)
146adantl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝑥 ∈ (𝐴[,]𝐶))
15 iccgelb 13320 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐴[,]𝐶)) → 𝐴𝑥)
1613, 4, 14, 15syl3anc 1371 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝐴𝑥)
1716adantr 481 . . . . . . 7 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → 𝐴𝑥)
18 simpr 485 . . . . . . . 8 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → ¬ 𝐵 < 𝑥)
198, 2xrlenltd 11221 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → (𝑥𝐵 ↔ ¬ 𝐵 < 𝑥))
2019adantr 481 . . . . . . . 8 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → (𝑥𝐵 ↔ ¬ 𝐵 < 𝑥))
2118, 20mpbird 256 . . . . . . 7 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → 𝑥𝐵)
2210, 11, 12, 17, 21eliccxrd 43755 . . . . . 6 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → 𝑥 ∈ (𝐴[,]𝐵))
23 eldifn 4087 . . . . . . 7 (𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) → ¬ 𝑥 ∈ (𝐴[,]𝐵))
2423ad2antlr 725 . . . . . 6 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → ¬ 𝑥 ∈ (𝐴[,]𝐵))
2522, 24condan 816 . . . . 5 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝐵 < 𝑥)
26 iccleub 13319 . . . . . 6 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐴[,]𝐶)) → 𝑥𝐶)
2713, 4, 14, 26syl3anc 1371 . . . . 5 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝑥𝐶)
282, 4, 8, 25, 27eliocd 43735 . . . 4 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝑥 ∈ (𝐵(,]𝐶))
2928ralrimiva 3143 . . 3 (𝜑 → ∀𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))𝑥 ∈ (𝐵(,]𝐶))
30 dfss3 3932 . . 3 (((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) ⊆ (𝐵(,]𝐶) ↔ ∀𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))𝑥 ∈ (𝐵(,]𝐶))
3129, 30sylibr 233 . 2 (𝜑 → ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) ⊆ (𝐵(,]𝐶))
329adantr 481 . . . 4 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐴 ∈ ℝ*)
333adantr 481 . . . 4 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐶 ∈ ℝ*)
34 iocssxr 13348 . . . . . 6 (𝐵(,]𝐶) ⊆ ℝ*
35 id 22 . . . . . 6 (𝑥 ∈ (𝐵(,]𝐶) → 𝑥 ∈ (𝐵(,]𝐶))
3634, 35sselid 3942 . . . . 5 (𝑥 ∈ (𝐵(,]𝐶) → 𝑥 ∈ ℝ*)
3736adantl 482 . . . 4 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ ℝ*)
381adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐵 ∈ ℝ*)
39 iccdificc.4 . . . . . . 7 (𝜑𝐴𝐵)
4039adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐴𝐵)
41 simpr 485 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ (𝐵(,]𝐶))
42 iocgtlb 43730 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵(,]𝐶)) → 𝐵 < 𝑥)
4338, 33, 41, 42syl3anc 1371 . . . . . 6 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐵 < 𝑥)
4432, 38, 37, 40, 43xrlelttrd 13079 . . . . 5 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐴 < 𝑥)
4532, 37, 44xrltled 13069 . . . 4 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐴𝑥)
46 iocleub 43731 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵(,]𝐶)) → 𝑥𝐶)
4738, 33, 41, 46syl3anc 1371 . . . 4 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥𝐶)
4832, 33, 37, 45, 47eliccxrd 43755 . . 3 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ (𝐴[,]𝐶))
4932, 38, 37, 43xrgtnelicc 43766 . . 3 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → ¬ 𝑥 ∈ (𝐴[,]𝐵))
5048, 49eldifd 3921 . 2 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)))
5131, 50eqelssd 3965 1 (𝜑 → ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) = (𝐵(,]𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  cdif 3907  wss 3910   class class class wbr 5105  (class class class)co 7357  *cxr 11188   < clt 11189  cle 11190  (,]cioc 13265  [,]cicc 13267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-pre-lttri 11125  ax-pre-lttrn 11126
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-ioc 13269  df-icc 13271
This theorem is referenced by:  salexct2  44570
  Copyright terms: Public domain W3C validator