MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftalem3 Structured version   Visualization version   GIF version

Theorem ftalem3 24696
Description: Lemma for fta 24701. There exists a global minimum of the function abs ∘ 𝐹. The proof uses a circle of radius 𝑟 where 𝑟 is the value coming from ftalem1 24694; since this is a compact set, the minimum on this disk is achieved, and this must then be the global minimum. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
ftalem.1 𝐴 = (coeff‘𝐹)
ftalem.2 𝑁 = (deg‘𝐹)
ftalem.3 (𝜑𝐹 ∈ (Poly‘𝑆))
ftalem.4 (𝜑𝑁 ∈ ℕ)
ftalem3.5 𝐷 = {𝑦 ∈ ℂ ∣ (abs‘𝑦) ≤ 𝑅}
ftalem3.6 𝐽 = (TopOpen‘ℂfld)
ftalem3.7 (𝜑𝑅 ∈ ℝ+)
ftalem3.8 (𝜑 → ∀𝑥 ∈ ℂ (𝑅 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
Assertion
Ref Expression
ftalem3 (𝜑 → ∃𝑧 ∈ ℂ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑧,𝐷   𝑥,𝑁   𝑥,𝑦,𝐹,𝑧   𝑥,𝐽,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑧)   𝐷(𝑦)   𝑅(𝑧)   𝑆(𝑥,𝑦,𝑧)   𝐽(𝑦)   𝑁(𝑦,𝑧)

Proof of Theorem ftalem3
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 ftalem3.5 . . . 4 𝐷 = {𝑦 ∈ ℂ ∣ (abs‘𝑦) ≤ 𝑅}
2 ssrab2 3671 . . . 4 {𝑦 ∈ ℂ ∣ (abs‘𝑦) ≤ 𝑅} ⊆ ℂ
31, 2eqsstri 3619 . . 3 𝐷 ⊆ ℂ
4 ftalem3.6 . . . . . . . 8 𝐽 = (TopOpen‘ℂfld)
54cnfldtopon 22491 . . . . . . 7 𝐽 ∈ (TopOn‘ℂ)
6 resttopon 20870 . . . . . . 7 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝐷 ⊆ ℂ) → (𝐽t 𝐷) ∈ (TopOn‘𝐷))
75, 3, 6mp2an 707 . . . . . 6 (𝐽t 𝐷) ∈ (TopOn‘𝐷)
87toponunii 20642 . . . . 5 𝐷 = (𝐽t 𝐷)
9 eqid 2626 . . . . 5 (topGen‘ran (,)) = (topGen‘ran (,))
10 cnxmet 22481 . . . . . . . 8 (abs ∘ − ) ∈ (∞Met‘ℂ)
1110a1i 11 . . . . . . 7 (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ))
12 0cn 9977 . . . . . . . 8 0 ∈ ℂ
1312a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℂ)
14 ftalem3.7 . . . . . . . 8 (𝜑𝑅 ∈ ℝ+)
1514rpxrd 11817 . . . . . . 7 (𝜑𝑅 ∈ ℝ*)
164cnfldtopn 22490 . . . . . . . 8 𝐽 = (MetOpen‘(abs ∘ − ))
17 eqid 2626 . . . . . . . . . . . . . 14 (abs ∘ − ) = (abs ∘ − )
1817cnmetdval 22479 . . . . . . . . . . . . 13 ((0 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0(abs ∘ − )𝑦) = (abs‘(0 − 𝑦)))
1912, 18mpan 705 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → (0(abs ∘ − )𝑦) = (abs‘(0 − 𝑦)))
20 df-neg 10214 . . . . . . . . . . . . . 14 -𝑦 = (0 − 𝑦)
2120fveq2i 6153 . . . . . . . . . . . . 13 (abs‘-𝑦) = (abs‘(0 − 𝑦))
22 absneg 13946 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → (abs‘-𝑦) = (abs‘𝑦))
2321, 22syl5eqr 2674 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → (abs‘(0 − 𝑦)) = (abs‘𝑦))
2419, 23eqtrd 2660 . . . . . . . . . . 11 (𝑦 ∈ ℂ → (0(abs ∘ − )𝑦) = (abs‘𝑦))
2524breq1d 4628 . . . . . . . . . 10 (𝑦 ∈ ℂ → ((0(abs ∘ − )𝑦) ≤ 𝑅 ↔ (abs‘𝑦) ≤ 𝑅))
2625rabbiia 3178 . . . . . . . . 9 {𝑦 ∈ ℂ ∣ (0(abs ∘ − )𝑦) ≤ 𝑅} = {𝑦 ∈ ℂ ∣ (abs‘𝑦) ≤ 𝑅}
271, 26eqtr4i 2651 . . . . . . . 8 𝐷 = {𝑦 ∈ ℂ ∣ (0(abs ∘ − )𝑦) ≤ 𝑅}
2816, 27blcld 22215 . . . . . . 7 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → 𝐷 ∈ (Clsd‘𝐽))
2911, 13, 15, 28syl3anc 1323 . . . . . 6 (𝜑𝐷 ∈ (Clsd‘𝐽))
3014rpred 11816 . . . . . . 7 (𝜑𝑅 ∈ ℝ)
31 fveq2 6150 . . . . . . . . . . 11 (𝑦 = 𝑥 → (abs‘𝑦) = (abs‘𝑥))
3231breq1d 4628 . . . . . . . . . 10 (𝑦 = 𝑥 → ((abs‘𝑦) ≤ 𝑅 ↔ (abs‘𝑥) ≤ 𝑅))
3332, 1elrab2 3353 . . . . . . . . 9 (𝑥𝐷 ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) ≤ 𝑅))
3433simprbi 480 . . . . . . . 8 (𝑥𝐷 → (abs‘𝑥) ≤ 𝑅)
3534rgen 2922 . . . . . . 7 𝑥𝐷 (abs‘𝑥) ≤ 𝑅
36 breq2 4622 . . . . . . . . 9 (𝑠 = 𝑅 → ((abs‘𝑥) ≤ 𝑠 ↔ (abs‘𝑥) ≤ 𝑅))
3736ralbidv 2985 . . . . . . . 8 (𝑠 = 𝑅 → (∀𝑥𝐷 (abs‘𝑥) ≤ 𝑠 ↔ ∀𝑥𝐷 (abs‘𝑥) ≤ 𝑅))
3837rspcev 3300 . . . . . . 7 ((𝑅 ∈ ℝ ∧ ∀𝑥𝐷 (abs‘𝑥) ≤ 𝑅) → ∃𝑠 ∈ ℝ ∀𝑥𝐷 (abs‘𝑥) ≤ 𝑠)
3930, 35, 38sylancl 693 . . . . . 6 (𝜑 → ∃𝑠 ∈ ℝ ∀𝑥𝐷 (abs‘𝑥) ≤ 𝑠)
40 eqid 2626 . . . . . . . 8 (𝐽t 𝐷) = (𝐽t 𝐷)
414, 40cnheibor 22657 . . . . . . 7 (𝐷 ⊆ ℂ → ((𝐽t 𝐷) ∈ Comp ↔ (𝐷 ∈ (Clsd‘𝐽) ∧ ∃𝑠 ∈ ℝ ∀𝑥𝐷 (abs‘𝑥) ≤ 𝑠)))
423, 41ax-mp 5 . . . . . 6 ((𝐽t 𝐷) ∈ Comp ↔ (𝐷 ∈ (Clsd‘𝐽) ∧ ∃𝑠 ∈ ℝ ∀𝑥𝐷 (abs‘𝑥) ≤ 𝑠))
4329, 39, 42sylanbrc 697 . . . . 5 (𝜑 → (𝐽t 𝐷) ∈ Comp)
44 ftalem.3 . . . . . . . . 9 (𝜑𝐹 ∈ (Poly‘𝑆))
45 plycn 23916 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (ℂ–cn→ℂ))
4644, 45syl 17 . . . . . . . 8 (𝜑𝐹 ∈ (ℂ–cn→ℂ))
47 abscncf 22607 . . . . . . . . 9 abs ∈ (ℂ–cn→ℝ)
4847a1i 11 . . . . . . . 8 (𝜑 → abs ∈ (ℂ–cn→ℝ))
4946, 48cncfco 22613 . . . . . . 7 (𝜑 → (abs ∘ 𝐹) ∈ (ℂ–cn→ℝ))
50 ssid 3608 . . . . . . . 8 ℂ ⊆ ℂ
51 ax-resscn 9938 . . . . . . . 8 ℝ ⊆ ℂ
524cnfldtop 22492 . . . . . . . . . . 11 𝐽 ∈ Top
535toponunii 20642 . . . . . . . . . . . 12 ℂ = 𝐽
5453restid 16010 . . . . . . . . . . 11 (𝐽 ∈ Top → (𝐽t ℂ) = 𝐽)
5552, 54ax-mp 5 . . . . . . . . . 10 (𝐽t ℂ) = 𝐽
5655eqcomi 2635 . . . . . . . . 9 𝐽 = (𝐽t ℂ)
574tgioo2 22509 . . . . . . . . 9 (topGen‘ran (,)) = (𝐽t ℝ)
584, 56, 57cncfcn 22615 . . . . . . . 8 ((ℂ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℂ–cn→ℝ) = (𝐽 Cn (topGen‘ran (,))))
5950, 51, 58mp2an 707 . . . . . . 7 (ℂ–cn→ℝ) = (𝐽 Cn (topGen‘ran (,)))
6049, 59syl6eleq 2714 . . . . . 6 (𝜑 → (abs ∘ 𝐹) ∈ (𝐽 Cn (topGen‘ran (,))))
6153cnrest 20994 . . . . . 6 (((abs ∘ 𝐹) ∈ (𝐽 Cn (topGen‘ran (,))) ∧ 𝐷 ⊆ ℂ) → ((abs ∘ 𝐹) ↾ 𝐷) ∈ ((𝐽t 𝐷) Cn (topGen‘ran (,))))
6260, 3, 61sylancl 693 . . . . 5 (𝜑 → ((abs ∘ 𝐹) ↾ 𝐷) ∈ ((𝐽t 𝐷) Cn (topGen‘ran (,))))
6314rpge0d 11820 . . . . . . 7 (𝜑 → 0 ≤ 𝑅)
64 fveq2 6150 . . . . . . . . . 10 (𝑦 = 0 → (abs‘𝑦) = (abs‘0))
65 abs0 13954 . . . . . . . . . 10 (abs‘0) = 0
6664, 65syl6eq 2676 . . . . . . . . 9 (𝑦 = 0 → (abs‘𝑦) = 0)
6766breq1d 4628 . . . . . . . 8 (𝑦 = 0 → ((abs‘𝑦) ≤ 𝑅 ↔ 0 ≤ 𝑅))
6867, 1elrab2 3353 . . . . . . 7 (0 ∈ 𝐷 ↔ (0 ∈ ℂ ∧ 0 ≤ 𝑅))
6913, 63, 68sylanbrc 697 . . . . . 6 (𝜑 → 0 ∈ 𝐷)
70 ne0i 3902 . . . . . 6 (0 ∈ 𝐷𝐷 ≠ ∅)
7169, 70syl 17 . . . . 5 (𝜑𝐷 ≠ ∅)
728, 9, 43, 62, 71evth2 22662 . . . 4 (𝜑 → ∃𝑧𝐷𝑥𝐷 (((abs ∘ 𝐹) ↾ 𝐷)‘𝑧) ≤ (((abs ∘ 𝐹) ↾ 𝐷)‘𝑥))
73 fvres 6165 . . . . . . . . 9 (𝑧𝐷 → (((abs ∘ 𝐹) ↾ 𝐷)‘𝑧) = ((abs ∘ 𝐹)‘𝑧))
7473ad2antlr 762 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → (((abs ∘ 𝐹) ↾ 𝐷)‘𝑧) = ((abs ∘ 𝐹)‘𝑧))
75 plyf 23853 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
7644, 75syl 17 . . . . . . . . . 10 (𝜑𝐹:ℂ⟶ℂ)
7776ad2antrr 761 . . . . . . . . 9 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → 𝐹:ℂ⟶ℂ)
78 simplr 791 . . . . . . . . . 10 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → 𝑧𝐷)
793, 78sseldi 3586 . . . . . . . . 9 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → 𝑧 ∈ ℂ)
80 fvco3 6233 . . . . . . . . 9 ((𝐹:ℂ⟶ℂ ∧ 𝑧 ∈ ℂ) → ((abs ∘ 𝐹)‘𝑧) = (abs‘(𝐹𝑧)))
8177, 79, 80syl2anc 692 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → ((abs ∘ 𝐹)‘𝑧) = (abs‘(𝐹𝑧)))
8274, 81eqtrd 2660 . . . . . . 7 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → (((abs ∘ 𝐹) ↾ 𝐷)‘𝑧) = (abs‘(𝐹𝑧)))
83 fvres 6165 . . . . . . . . 9 (𝑥𝐷 → (((abs ∘ 𝐹) ↾ 𝐷)‘𝑥) = ((abs ∘ 𝐹)‘𝑥))
8483adantl 482 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → (((abs ∘ 𝐹) ↾ 𝐷)‘𝑥) = ((abs ∘ 𝐹)‘𝑥))
85 simpr 477 . . . . . . . . . 10 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → 𝑥𝐷)
863, 85sseldi 3586 . . . . . . . . 9 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → 𝑥 ∈ ℂ)
87 fvco3 6233 . . . . . . . . 9 ((𝐹:ℂ⟶ℂ ∧ 𝑥 ∈ ℂ) → ((abs ∘ 𝐹)‘𝑥) = (abs‘(𝐹𝑥)))
8877, 86, 87syl2anc 692 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → ((abs ∘ 𝐹)‘𝑥) = (abs‘(𝐹𝑥)))
8984, 88eqtrd 2660 . . . . . . 7 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → (((abs ∘ 𝐹) ↾ 𝐷)‘𝑥) = (abs‘(𝐹𝑥)))
9082, 89breq12d 4631 . . . . . 6 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → ((((abs ∘ 𝐹) ↾ 𝐷)‘𝑧) ≤ (((abs ∘ 𝐹) ↾ 𝐷)‘𝑥) ↔ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
9190ralbidva 2984 . . . . 5 ((𝜑𝑧𝐷) → (∀𝑥𝐷 (((abs ∘ 𝐹) ↾ 𝐷)‘𝑧) ≤ (((abs ∘ 𝐹) ↾ 𝐷)‘𝑥) ↔ ∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
9291rexbidva 3047 . . . 4 (𝜑 → (∃𝑧𝐷𝑥𝐷 (((abs ∘ 𝐹) ↾ 𝐷)‘𝑧) ≤ (((abs ∘ 𝐹) ↾ 𝐷)‘𝑥) ↔ ∃𝑧𝐷𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
9372, 92mpbid 222 . . 3 (𝜑 → ∃𝑧𝐷𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
94 ssrexv 3651 . . 3 (𝐷 ⊆ ℂ → (∃𝑧𝐷𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → ∃𝑧 ∈ ℂ ∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
953, 93, 94mpsyl 68 . 2 (𝜑 → ∃𝑧 ∈ ℂ ∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
9669adantr 481 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 0 ∈ 𝐷)
97 fveq2 6150 . . . . . . . . . 10 (𝑥 = 0 → (𝐹𝑥) = (𝐹‘0))
9897fveq2d 6154 . . . . . . . . 9 (𝑥 = 0 → (abs‘(𝐹𝑥)) = (abs‘(𝐹‘0)))
9998breq2d 4630 . . . . . . . 8 (𝑥 = 0 → ((abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) ↔ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹‘0))))
10099rspcv 3296 . . . . . . 7 (0 ∈ 𝐷 → (∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹‘0))))
10196, 100syl 17 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → (∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹‘0))))
10276ad2antrr 761 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → 𝐹:ℂ⟶ℂ)
103 ffvelrn 6314 . . . . . . . . . . 11 ((𝐹:ℂ⟶ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) ∈ ℂ)
104102, 12, 103sylancl 693 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (𝐹‘0) ∈ ℂ)
105104abscld 14104 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (abs‘(𝐹‘0)) ∈ ℝ)
106 simpr 477 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → 𝑥 ∈ (ℂ ∖ 𝐷))
107106eldifad 3572 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → 𝑥 ∈ ℂ)
108102, 107ffvelrnd 6317 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (𝐹𝑥) ∈ ℂ)
109108abscld 14104 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (abs‘(𝐹𝑥)) ∈ ℝ)
110 ftalem3.8 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ ℂ (𝑅 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
111110ad2antrr 761 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → ∀𝑥 ∈ ℂ (𝑅 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
112106eldifbd 3573 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → ¬ 𝑥𝐷)
11333baib 943 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → (𝑥𝐷 ↔ (abs‘𝑥) ≤ 𝑅))
114107, 113syl 17 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (𝑥𝐷 ↔ (abs‘𝑥) ≤ 𝑅))
115112, 114mtbid 314 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → ¬ (abs‘𝑥) ≤ 𝑅)
11630ad2antrr 761 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → 𝑅 ∈ ℝ)
117107abscld 14104 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (abs‘𝑥) ∈ ℝ)
118116, 117ltnled 10129 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (𝑅 < (abs‘𝑥) ↔ ¬ (abs‘𝑥) ≤ 𝑅))
119115, 118mpbird 247 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → 𝑅 < (abs‘𝑥))
120 rsp 2929 . . . . . . . . . 10 (∀𝑥 ∈ ℂ (𝑅 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))) → (𝑥 ∈ ℂ → (𝑅 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
121111, 107, 119, 120syl3c 66 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))
122105, 109, 121ltled 10130 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (abs‘(𝐹‘0)) ≤ (abs‘(𝐹𝑥)))
123 simplr 791 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → 𝑧 ∈ ℂ)
124102, 123ffvelrnd 6317 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (𝐹𝑧) ∈ ℂ)
125124abscld 14104 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (abs‘(𝐹𝑧)) ∈ ℝ)
126 letr 10076 . . . . . . . . 9 (((abs‘(𝐹𝑧)) ∈ ℝ ∧ (abs‘(𝐹‘0)) ∈ ℝ ∧ (abs‘(𝐹𝑥)) ∈ ℝ) → (((abs‘(𝐹𝑧)) ≤ (abs‘(𝐹‘0)) ∧ (abs‘(𝐹‘0)) ≤ (abs‘(𝐹𝑥))) → (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
127125, 105, 109, 126syl3anc 1323 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (((abs‘(𝐹𝑧)) ≤ (abs‘(𝐹‘0)) ∧ (abs‘(𝐹‘0)) ≤ (abs‘(𝐹𝑥))) → (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
128122, 127mpan2d 709 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → ((abs‘(𝐹𝑧)) ≤ (abs‘(𝐹‘0)) → (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
129128ralrimdva 2968 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → ((abs‘(𝐹𝑧)) ≤ (abs‘(𝐹‘0)) → ∀𝑥 ∈ (ℂ ∖ 𝐷)(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
130101, 129syld 47 . . . . 5 ((𝜑𝑧 ∈ ℂ) → (∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → ∀𝑥 ∈ (ℂ ∖ 𝐷)(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
131130ancld 575 . . . 4 ((𝜑𝑧 ∈ ℂ) → (∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → (∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) ∧ ∀𝑥 ∈ (ℂ ∖ 𝐷)(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))))
132 ralunb 3777 . . . . 5 (∀𝑥 ∈ (𝐷 ∪ (ℂ ∖ 𝐷))(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) ↔ (∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) ∧ ∀𝑥 ∈ (ℂ ∖ 𝐷)(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
133 undif2 4021 . . . . . . 7 (𝐷 ∪ (ℂ ∖ 𝐷)) = (𝐷 ∪ ℂ)
134 ssequn1 3766 . . . . . . . 8 (𝐷 ⊆ ℂ ↔ (𝐷 ∪ ℂ) = ℂ)
1353, 134mpbi 220 . . . . . . 7 (𝐷 ∪ ℂ) = ℂ
136133, 135eqtri 2648 . . . . . 6 (𝐷 ∪ (ℂ ∖ 𝐷)) = ℂ
137136raleqi 3136 . . . . 5 (∀𝑥 ∈ (𝐷 ∪ (ℂ ∖ 𝐷))(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) ↔ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
138132, 137bitr3i 266 . . . 4 ((∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) ∧ ∀𝑥 ∈ (ℂ ∖ 𝐷)(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))) ↔ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
139131, 138syl6ib 241 . . 3 ((𝜑𝑧 ∈ ℂ) → (∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
140139reximdva 3016 . 2 (𝜑 → (∃𝑧 ∈ ℂ ∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → ∃𝑧 ∈ ℂ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
14195, 140mpd 15 1 (𝜑 → ∃𝑧 ∈ ℂ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1992  wne 2796  wral 2912  wrex 2913  {crab 2916  cdif 3557  cun 3558  wss 3560  c0 3896   class class class wbr 4618  ran crn 5080  cres 5081  ccom 5083  wf 5846  cfv 5850  (class class class)co 6605  cc 9879  cr 9880  0cc0 9881  *cxr 10018   < clt 10019  cle 10020  cmin 10211  -cneg 10212  cn 10965  +crp 11776  (,)cioo 12114  abscabs 13903  t crest 15997  TopOpenctopn 15998  topGenctg 16014  ∞Metcxmt 19645  fldccnfld 19660  Topctop 20612  TopOnctopon 20613  Clsdccld 20725   Cn ccn 20933  Compccmp 21094  cnccncf 22582  Polycply 23839  coeffccoe 23841  degcdgr 23842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959  ax-addf 9960  ax-mulf 9961
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-isom 5859  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-of 6851  df-om 7014  df-1st 7116  df-2nd 7117  df-supp 7242  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-2o 7507  df-oadd 7510  df-er 7688  df-map 7805  df-pm 7806  df-ixp 7854  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-fsupp 8221  df-fi 8262  df-sup 8293  df-inf 8294  df-oi 8360  df-card 8710  df-cda 8935  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-4 11026  df-5 11027  df-6 11028  df-7 11029  df-8 11030  df-9 11031  df-n0 11238  df-z 11323  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12118  df-icc 12121  df-fz 12266  df-fzo 12404  df-fl 12530  df-seq 12739  df-exp 12798  df-hash 13055  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-clim 14148  df-rlim 14149  df-sum 14346  df-struct 15778  df-ndx 15779  df-slot 15780  df-base 15781  df-sets 15782  df-ress 15783  df-plusg 15870  df-mulr 15871  df-starv 15872  df-sca 15873  df-vsca 15874  df-ip 15875  df-tset 15876  df-ple 15877  df-ds 15880  df-unif 15881  df-hom 15882  df-cco 15883  df-rest 15999  df-topn 16000  df-0g 16018  df-gsum 16019  df-topgen 16020  df-pt 16021  df-prds 16024  df-xrs 16078  df-qtop 16083  df-imas 16084  df-xps 16086  df-mre 16162  df-mrc 16163  df-acs 16165  df-mgm 17158  df-sgrp 17200  df-mnd 17211  df-submnd 17252  df-mulg 17457  df-cntz 17666  df-cmn 18111  df-psmet 19652  df-xmet 19653  df-met 19654  df-bl 19655  df-mopn 19656  df-cnfld 19661  df-top 20616  df-bases 20617  df-topon 20618  df-topsp 20619  df-cld 20728  df-cls 20730  df-cn 20936  df-cnp 20937  df-haus 21024  df-cmp 21095  df-tx 21270  df-hmeo 21463  df-xms 22030  df-ms 22031  df-tms 22032  df-cncf 22584  df-0p 23338  df-ply 23843  df-coe 23845  df-dgr 23846
This theorem is referenced by:  fta  24701
  Copyright terms: Public domain W3C validator