Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem102 Structured version   Visualization version   GIF version

Theorem fourierdlem102 40845
 Description: For a piecewise smooth function, the left and the right limits exist at any point. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem102.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem102.t 𝑇 = (2 · π)
fourierdlem102.per ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem102.g 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))
fourierdlem102.dmdv (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin)
fourierdlem102.gcn (𝜑𝐺 ∈ (dom 𝐺cn→ℂ))
fourierdlem102.rlim ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
fourierdlem102.llim ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
fourierdlem102.x (𝜑𝑋 ∈ ℝ)
fourierdlem102.p 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem102.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇)))
fourierdlem102.h 𝐻 = ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))
fourierdlem102.m 𝑀 = ((♯‘𝐻) − 1)
fourierdlem102.q 𝑄 = (℩𝑔𝑔 Isom < , < ((0...𝑀), 𝐻))
Assertion
Ref Expression
fourierdlem102 (𝜑 → (((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ≠ ∅ ∧ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅))
Distinct variable groups:   𝑥,𝐸   𝑖,𝐹,𝑛,𝑥   𝑖,𝐺,𝑥   𝑔,𝐻   𝑔,𝑀   𝑖,𝑀,𝑛,𝑝   𝑥,𝑀   𝑄,𝑔   𝑄,𝑖,𝑛,𝑝   𝑥,𝑄   𝑇,𝑖,𝑛,𝑝   𝑥,𝑇   𝑖,𝑋,𝑛,𝑝   𝑥,𝑋   𝜑,𝑔   𝜑,𝑖,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑝)   𝑃(𝑥,𝑔,𝑖,𝑛,𝑝)   𝑇(𝑔)   𝐸(𝑔,𝑖,𝑛,𝑝)   𝐹(𝑔,𝑝)   𝐺(𝑔,𝑛,𝑝)   𝐻(𝑥,𝑖,𝑛,𝑝)   𝑋(𝑔)

Proof of Theorem fourierdlem102
StepHypRef Expression
1 fourierdlem102.f . 2 (𝜑𝐹:ℝ⟶ℝ)
2 fourierdlem102.t . 2 𝑇 = (2 · π)
3 fourierdlem102.per . 2 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
4 fourierdlem102.x . 2 (𝜑𝑋 ∈ ℝ)
5 fourierdlem102.p . 2 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
6 fourierdlem102.m . . 3 𝑀 = ((♯‘𝐻) − 1)
7 2z 11522 . . . . . 6 2 ∈ ℤ
87a1i 11 . . . . 5 (𝜑 → 2 ∈ ℤ)
9 fourierdlem102.h . . . . . . . 8 𝐻 = ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))
10 tpfi 8352 . . . . . . . . . 10 {-π, π, (𝐸𝑋)} ∈ Fin
1110a1i 11 . . . . . . . . 9 (𝜑 → {-π, π, (𝐸𝑋)} ∈ Fin)
12 pire 24330 . . . . . . . . . . . . . . 15 π ∈ ℝ
1312renegcli 10455 . . . . . . . . . . . . . 14 -π ∈ ℝ
1413rexri 10210 . . . . . . . . . . . . 13 -π ∈ ℝ*
1512rexri 10210 . . . . . . . . . . . . 13 π ∈ ℝ*
16 negpilt0 39908 . . . . . . . . . . . . . . 15 -π < 0
17 pipos 24332 . . . . . . . . . . . . . . 15 0 < π
18 0re 10153 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
1913, 18, 12lttri 10276 . . . . . . . . . . . . . . 15 ((-π < 0 ∧ 0 < π) → -π < π)
2016, 17, 19mp2an 710 . . . . . . . . . . . . . 14 -π < π
2113, 12, 20ltleii 10273 . . . . . . . . . . . . 13 -π ≤ π
22 prunioo 12415 . . . . . . . . . . . . 13 ((-π ∈ ℝ* ∧ π ∈ ℝ* ∧ -π ≤ π) → ((-π(,)π) ∪ {-π, π}) = (-π[,]π))
2314, 15, 21, 22mp3an 1537 . . . . . . . . . . . 12 ((-π(,)π) ∪ {-π, π}) = (-π[,]π)
2423difeq1i 3832 . . . . . . . . . . 11 (((-π(,)π) ∪ {-π, π}) ∖ dom 𝐺) = ((-π[,]π) ∖ dom 𝐺)
25 difundir 3988 . . . . . . . . . . 11 (((-π(,)π) ∪ {-π, π}) ∖ dom 𝐺) = (((-π(,)π) ∖ dom 𝐺) ∪ ({-π, π} ∖ dom 𝐺))
2624, 25eqtr3i 2748 . . . . . . . . . 10 ((-π[,]π) ∖ dom 𝐺) = (((-π(,)π) ∖ dom 𝐺) ∪ ({-π, π} ∖ dom 𝐺))
27 fourierdlem102.dmdv . . . . . . . . . . 11 (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin)
28 prfi 8351 . . . . . . . . . . . 12 {-π, π} ∈ Fin
29 diffi 8308 . . . . . . . . . . . 12 ({-π, π} ∈ Fin → ({-π, π} ∖ dom 𝐺) ∈ Fin)
3028, 29mp1i 13 . . . . . . . . . . 11 (𝜑 → ({-π, π} ∖ dom 𝐺) ∈ Fin)
31 unfi 8343 . . . . . . . . . . 11 ((((-π(,)π) ∖ dom 𝐺) ∈ Fin ∧ ({-π, π} ∖ dom 𝐺) ∈ Fin) → (((-π(,)π) ∖ dom 𝐺) ∪ ({-π, π} ∖ dom 𝐺)) ∈ Fin)
3227, 30, 31syl2anc 696 . . . . . . . . . 10 (𝜑 → (((-π(,)π) ∖ dom 𝐺) ∪ ({-π, π} ∖ dom 𝐺)) ∈ Fin)
3326, 32syl5eqel 2807 . . . . . . . . 9 (𝜑 → ((-π[,]π) ∖ dom 𝐺) ∈ Fin)
34 unfi 8343 . . . . . . . . 9 (({-π, π, (𝐸𝑋)} ∈ Fin ∧ ((-π[,]π) ∖ dom 𝐺) ∈ Fin) → ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) ∈ Fin)
3511, 33, 34syl2anc 696 . . . . . . . 8 (𝜑 → ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) ∈ Fin)
369, 35syl5eqel 2807 . . . . . . 7 (𝜑𝐻 ∈ Fin)
37 hashcl 13260 . . . . . . 7 (𝐻 ∈ Fin → (♯‘𝐻) ∈ ℕ0)
3836, 37syl 17 . . . . . 6 (𝜑 → (♯‘𝐻) ∈ ℕ0)
3938nn0zd 11593 . . . . 5 (𝜑 → (♯‘𝐻) ∈ ℤ)
4013, 20ltneii 10263 . . . . . . 7 -π ≠ π
41 hashprg 13295 . . . . . . . 8 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π ≠ π ↔ (♯‘{-π, π}) = 2))
4213, 12, 41mp2an 710 . . . . . . 7 (-π ≠ π ↔ (♯‘{-π, π}) = 2)
4340, 42mpbi 220 . . . . . 6 (♯‘{-π, π}) = 2
4410elexi 3317 . . . . . . . . . 10 {-π, π, (𝐸𝑋)} ∈ V
45 ovex 6793 . . . . . . . . . . 11 (-π[,]π) ∈ V
46 difexg 4916 . . . . . . . . . . 11 ((-π[,]π) ∈ V → ((-π[,]π) ∖ dom 𝐺) ∈ V)
4745, 46ax-mp 5 . . . . . . . . . 10 ((-π[,]π) ∖ dom 𝐺) ∈ V
4844, 47unex 7073 . . . . . . . . 9 ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) ∈ V
499, 48eqeltri 2799 . . . . . . . 8 𝐻 ∈ V
50 negex 10392 . . . . . . . . . . 11 -π ∈ V
5150tpid1 4410 . . . . . . . . . 10 -π ∈ {-π, π, (𝐸𝑋)}
5212elexi 3317 . . . . . . . . . . 11 π ∈ V
5352tpid2 4411 . . . . . . . . . 10 π ∈ {-π, π, (𝐸𝑋)}
54 prssi 4461 . . . . . . . . . 10 ((-π ∈ {-π, π, (𝐸𝑋)} ∧ π ∈ {-π, π, (𝐸𝑋)}) → {-π, π} ⊆ {-π, π, (𝐸𝑋)})
5551, 53, 54mp2an 710 . . . . . . . . 9 {-π, π} ⊆ {-π, π, (𝐸𝑋)}
56 ssun1 3884 . . . . . . . . . 10 {-π, π, (𝐸𝑋)} ⊆ ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))
5756, 9sseqtr4i 3744 . . . . . . . . 9 {-π, π, (𝐸𝑋)} ⊆ 𝐻
5855, 57sstri 3718 . . . . . . . 8 {-π, π} ⊆ 𝐻
59 hashss 13310 . . . . . . . 8 ((𝐻 ∈ V ∧ {-π, π} ⊆ 𝐻) → (♯‘{-π, π}) ≤ (♯‘𝐻))
6049, 58, 59mp2an 710 . . . . . . 7 (♯‘{-π, π}) ≤ (♯‘𝐻)
6160a1i 11 . . . . . 6 (𝜑 → (♯‘{-π, π}) ≤ (♯‘𝐻))
6243, 61syl5eqbrr 4796 . . . . 5 (𝜑 → 2 ≤ (♯‘𝐻))
63 eluz2 11806 . . . . 5 ((♯‘𝐻) ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ (♯‘𝐻) ∈ ℤ ∧ 2 ≤ (♯‘𝐻)))
648, 39, 62, 63syl3anbrc 1383 . . . 4 (𝜑 → (♯‘𝐻) ∈ (ℤ‘2))
65 uz2m1nn 11877 . . . 4 ((♯‘𝐻) ∈ (ℤ‘2) → ((♯‘𝐻) − 1) ∈ ℕ)
6664, 65syl 17 . . 3 (𝜑 → ((♯‘𝐻) − 1) ∈ ℕ)
676, 66syl5eqel 2807 . 2 (𝜑𝑀 ∈ ℕ)
6813a1i 11 . . . . . . . . . . 11 (𝜑 → -π ∈ ℝ)
6912a1i 11 . . . . . . . . . . 11 (𝜑 → π ∈ ℝ)
70 negpitopissre 24406 . . . . . . . . . . . 12 (-π(,]π) ⊆ ℝ
7120a1i 11 . . . . . . . . . . . . . 14 (𝜑 → -π < π)
72 picn 24331 . . . . . . . . . . . . . . . 16 π ∈ ℂ
73722timesi 11260 . . . . . . . . . . . . . . 15 (2 · π) = (π + π)
7472, 72subnegi 10473 . . . . . . . . . . . . . . 15 (π − -π) = (π + π)
7573, 2, 743eqtr4i 2756 . . . . . . . . . . . . . 14 𝑇 = (π − -π)
76 fourierdlem102.e . . . . . . . . . . . . . 14 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇)))
7768, 69, 71, 75, 76fourierdlem4 40748 . . . . . . . . . . . . 13 (𝜑𝐸:ℝ⟶(-π(,]π))
7877, 4ffvelrnd 6475 . . . . . . . . . . . 12 (𝜑 → (𝐸𝑋) ∈ (-π(,]π))
7970, 78sseldi 3707 . . . . . . . . . . 11 (𝜑 → (𝐸𝑋) ∈ ℝ)
8068, 69, 793jca 1379 . . . . . . . . . 10 (𝜑 → (-π ∈ ℝ ∧ π ∈ ℝ ∧ (𝐸𝑋) ∈ ℝ))
81 fvex 6314 . . . . . . . . . . 11 (𝐸𝑋) ∈ V
8250, 52, 81tpss 4476 . . . . . . . . . 10 ((-π ∈ ℝ ∧ π ∈ ℝ ∧ (𝐸𝑋) ∈ ℝ) ↔ {-π, π, (𝐸𝑋)} ⊆ ℝ)
8380, 82sylib 208 . . . . . . . . 9 (𝜑 → {-π, π, (𝐸𝑋)} ⊆ ℝ)
84 iccssre 12369 . . . . . . . . . . 11 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
8513, 12, 84mp2an 710 . . . . . . . . . 10 (-π[,]π) ⊆ ℝ
86 ssdifss 3849 . . . . . . . . . 10 ((-π[,]π) ⊆ ℝ → ((-π[,]π) ∖ dom 𝐺) ⊆ ℝ)
8785, 86mp1i 13 . . . . . . . . 9 (𝜑 → ((-π[,]π) ∖ dom 𝐺) ⊆ ℝ)
8883, 87unssd 3897 . . . . . . . 8 (𝜑 → ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) ⊆ ℝ)
899, 88syl5eqss 3755 . . . . . . 7 (𝜑𝐻 ⊆ ℝ)
90 fourierdlem102.q . . . . . . 7 𝑄 = (℩𝑔𝑔 Isom < , < ((0...𝑀), 𝐻))
9136, 89, 90, 6fourierdlem36 40780 . . . . . 6 (𝜑𝑄 Isom < , < ((0...𝑀), 𝐻))
92 isof1o 6688 . . . . . 6 (𝑄 Isom < , < ((0...𝑀), 𝐻) → 𝑄:(0...𝑀)–1-1-onto𝐻)
93 f1of 6250 . . . . . 6 (𝑄:(0...𝑀)–1-1-onto𝐻𝑄:(0...𝑀)⟶𝐻)
9491, 92, 933syl 18 . . . . 5 (𝜑𝑄:(0...𝑀)⟶𝐻)
9594, 89fssd 6170 . . . 4 (𝜑𝑄:(0...𝑀)⟶ℝ)
96 reex 10140 . . . . 5 ℝ ∈ V
97 ovex 6793 . . . . 5 (0...𝑀) ∈ V
9896, 97elmap 8003 . . . 4 (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ↔ 𝑄:(0...𝑀)⟶ℝ)
9995, 98sylibr 224 . . 3 (𝜑𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)))
100 fveq2 6304 . . . . . . . . . . 11 (0 = 𝑖 → (𝑄‘0) = (𝑄𝑖))
101100adantl 473 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 = 𝑖) → (𝑄‘0) = (𝑄𝑖))
10295ffvelrnda 6474 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ∈ ℝ)
103102leidd 10707 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ≤ (𝑄𝑖))
104103adantr 472 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 = 𝑖) → (𝑄𝑖) ≤ (𝑄𝑖))
105101, 104eqbrtrd 4782 . . . . . . . . 9 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 = 𝑖) → (𝑄‘0) ≤ (𝑄𝑖))
106 elfzelz 12456 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝑀) → 𝑖 ∈ ℤ)
107106zred 11595 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑀) → 𝑖 ∈ ℝ)
108107ad2antlr 765 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 0 = 𝑖) → 𝑖 ∈ ℝ)
109 elfzle1 12458 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑀) → 0 ≤ 𝑖)
110109ad2antlr 765 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 0 = 𝑖) → 0 ≤ 𝑖)
111 neqne 2904 . . . . . . . . . . . . 13 (¬ 0 = 𝑖 → 0 ≠ 𝑖)
112111necomd 2951 . . . . . . . . . . . 12 (¬ 0 = 𝑖𝑖 ≠ 0)
113112adantl 473 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 0 = 𝑖) → 𝑖 ≠ 0)
114108, 110, 113ne0gt0d 10287 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 0 = 𝑖) → 0 < 𝑖)
115 nnssnn0 11408 . . . . . . . . . . . . . . . . 17 ℕ ⊆ ℕ0
116 nn0uz 11836 . . . . . . . . . . . . . . . . 17 0 = (ℤ‘0)
117115, 116sseqtri 3743 . . . . . . . . . . . . . . . 16 ℕ ⊆ (ℤ‘0)
118117, 67sseldi 3707 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ (ℤ‘0))
119 eluzfz1 12462 . . . . . . . . . . . . . . 15 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
120118, 119syl 17 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ (0...𝑀))
12194, 120ffvelrnd 6475 . . . . . . . . . . . . 13 (𝜑 → (𝑄‘0) ∈ 𝐻)
12289, 121sseldd 3710 . . . . . . . . . . . 12 (𝜑 → (𝑄‘0) ∈ ℝ)
123122ad2antrr 764 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → (𝑄‘0) ∈ ℝ)
124102adantr 472 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → (𝑄𝑖) ∈ ℝ)
125 simpr 479 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → 0 < 𝑖)
12691ad2antrr 764 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → 𝑄 Isom < , < ((0...𝑀), 𝐻))
127120anim1i 593 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0...𝑀)) → (0 ∈ (0...𝑀) ∧ 𝑖 ∈ (0...𝑀)))
128127adantr 472 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → (0 ∈ (0...𝑀) ∧ 𝑖 ∈ (0...𝑀)))
129 isorel 6691 . . . . . . . . . . . . 13 ((𝑄 Isom < , < ((0...𝑀), 𝐻) ∧ (0 ∈ (0...𝑀) ∧ 𝑖 ∈ (0...𝑀))) → (0 < 𝑖 ↔ (𝑄‘0) < (𝑄𝑖)))
130126, 128, 129syl2anc 696 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → (0 < 𝑖 ↔ (𝑄‘0) < (𝑄𝑖)))
131125, 130mpbid 222 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → (𝑄‘0) < (𝑄𝑖))
132123, 124, 131ltled 10298 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → (𝑄‘0) ≤ (𝑄𝑖))
133114, 132syldan 488 . . . . . . . . 9 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 0 = 𝑖) → (𝑄‘0) ≤ (𝑄𝑖))
134105, 133pm2.61dan 867 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄‘0) ≤ (𝑄𝑖))
135134adantr 472 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → (𝑄‘0) ≤ (𝑄𝑖))
136 simpr 479 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → (𝑄𝑖) = -π)
137135, 136breqtrd 4786 . . . . . 6 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → (𝑄‘0) ≤ -π)
13868rexrd 10202 . . . . . . . 8 (𝜑 → -π ∈ ℝ*)
13969rexrd 10202 . . . . . . . 8 (𝜑 → π ∈ ℝ*)
140 lbicc2 12402 . . . . . . . . . . . . . 14 ((-π ∈ ℝ* ∧ π ∈ ℝ* ∧ -π ≤ π) → -π ∈ (-π[,]π))
14114, 15, 21, 140mp3an 1537 . . . . . . . . . . . . 13 -π ∈ (-π[,]π)
142141a1i 11 . . . . . . . . . . . 12 (𝜑 → -π ∈ (-π[,]π))
143 ubicc2 12403 . . . . . . . . . . . . . 14 ((-π ∈ ℝ* ∧ π ∈ ℝ* ∧ -π ≤ π) → π ∈ (-π[,]π))
14414, 15, 21, 143mp3an 1537 . . . . . . . . . . . . 13 π ∈ (-π[,]π)
145144a1i 11 . . . . . . . . . . . 12 (𝜑 → π ∈ (-π[,]π))
146 iocssicc 12375 . . . . . . . . . . . . 13 (-π(,]π) ⊆ (-π[,]π)
147146, 78sseldi 3707 . . . . . . . . . . . 12 (𝜑 → (𝐸𝑋) ∈ (-π[,]π))
148 tpssi 4477 . . . . . . . . . . . 12 ((-π ∈ (-π[,]π) ∧ π ∈ (-π[,]π) ∧ (𝐸𝑋) ∈ (-π[,]π)) → {-π, π, (𝐸𝑋)} ⊆ (-π[,]π))
149142, 145, 147, 148syl3anc 1439 . . . . . . . . . . 11 (𝜑 → {-π, π, (𝐸𝑋)} ⊆ (-π[,]π))
150 difssd 3846 . . . . . . . . . . 11 (𝜑 → ((-π[,]π) ∖ dom 𝐺) ⊆ (-π[,]π))
151149, 150unssd 3897 . . . . . . . . . 10 (𝜑 → ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) ⊆ (-π[,]π))
1529, 151syl5eqss 3755 . . . . . . . . 9 (𝜑𝐻 ⊆ (-π[,]π))
153152, 121sseldd 3710 . . . . . . . 8 (𝜑 → (𝑄‘0) ∈ (-π[,]π))
154 iccgelb 12344 . . . . . . . 8 ((-π ∈ ℝ* ∧ π ∈ ℝ* ∧ (𝑄‘0) ∈ (-π[,]π)) → -π ≤ (𝑄‘0))
155138, 139, 153, 154syl3anc 1439 . . . . . . 7 (𝜑 → -π ≤ (𝑄‘0))
156155ad2antrr 764 . . . . . 6 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → -π ≤ (𝑄‘0))
157122ad2antrr 764 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → (𝑄‘0) ∈ ℝ)
15813a1i 11 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → -π ∈ ℝ)
159157, 158letri3d 10292 . . . . . 6 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → ((𝑄‘0) = -π ↔ ((𝑄‘0) ≤ -π ∧ -π ≤ (𝑄‘0))))
160137, 156, 159mpbir2and 995 . . . . 5 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → (𝑄‘0) = -π)
16157, 51sselii 3706 . . . . . . 7 -π ∈ 𝐻
162 f1ofo 6257 . . . . . . . . 9 (𝑄:(0...𝑀)–1-1-onto𝐻𝑄:(0...𝑀)–onto𝐻)
16392, 162syl 17 . . . . . . . 8 (𝑄 Isom < , < ((0...𝑀), 𝐻) → 𝑄:(0...𝑀)–onto𝐻)
164 forn 6231 . . . . . . . 8 (𝑄:(0...𝑀)–onto𝐻 → ran 𝑄 = 𝐻)
16591, 163, 1643syl 18 . . . . . . 7 (𝜑 → ran 𝑄 = 𝐻)
166161, 165syl5eleqr 2810 . . . . . 6 (𝜑 → -π ∈ ran 𝑄)
167 ffn 6158 . . . . . . 7 (𝑄:(0...𝑀)⟶𝐻𝑄 Fn (0...𝑀))
168 fvelrnb 6357 . . . . . . 7 (𝑄 Fn (0...𝑀) → (-π ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = -π))
16994, 167, 1683syl 18 . . . . . 6 (𝜑 → (-π ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = -π))
170166, 169mpbid 222 . . . . 5 (𝜑 → ∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = -π)
171160, 170r19.29a 3180 . . . 4 (𝜑 → (𝑄‘0) = -π)
17257, 53sselii 3706 . . . . . . 7 π ∈ 𝐻
173172, 165syl5eleqr 2810 . . . . . 6 (𝜑 → π ∈ ran 𝑄)
174 fvelrnb 6357 . . . . . . 7 (𝑄 Fn (0...𝑀) → (π ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = π))
17594, 167, 1743syl 18 . . . . . 6 (𝜑 → (π ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = π))
176173, 175mpbid 222 . . . . 5 (𝜑 → ∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = π)
17794, 152fssd 6170 . . . . . . . . . 10 (𝜑𝑄:(0...𝑀)⟶(-π[,]π))
178 eluzfz2 12463 . . . . . . . . . . 11 (𝑀 ∈ (ℤ‘0) → 𝑀 ∈ (0...𝑀))
179118, 178syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ (0...𝑀))
180177, 179ffvelrnd 6475 . . . . . . . . 9 (𝜑 → (𝑄𝑀) ∈ (-π[,]π))
181 iccleub 12343 . . . . . . . . 9 ((-π ∈ ℝ* ∧ π ∈ ℝ* ∧ (𝑄𝑀) ∈ (-π[,]π)) → (𝑄𝑀) ≤ π)
182138, 139, 180, 181syl3anc 1439 . . . . . . . 8 (𝜑 → (𝑄𝑀) ≤ π)
1831823ad2ant1 1125 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → (𝑄𝑀) ≤ π)
184 id 22 . . . . . . . . . 10 ((𝑄𝑖) = π → (𝑄𝑖) = π)
185184eqcomd 2730 . . . . . . . . 9 ((𝑄𝑖) = π → π = (𝑄𝑖))
1861853ad2ant3 1127 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → π = (𝑄𝑖))
187103adantr 472 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 = 𝑀) → (𝑄𝑖) ≤ (𝑄𝑖))
188 fveq2 6304 . . . . . . . . . . . 12 (𝑖 = 𝑀 → (𝑄𝑖) = (𝑄𝑀))
189188adantl 473 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 = 𝑀) → (𝑄𝑖) = (𝑄𝑀))
190187, 189breqtrd 4786 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 = 𝑀) → (𝑄𝑖) ≤ (𝑄𝑀))
191107ad2antlr 765 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑀) → 𝑖 ∈ ℝ)
192 elfzel2 12454 . . . . . . . . . . . . . 14 (𝑖 ∈ (0...𝑀) → 𝑀 ∈ ℤ)
193192zred 11595 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝑀) → 𝑀 ∈ ℝ)
194193ad2antlr 765 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑀) → 𝑀 ∈ ℝ)
195 elfzle2 12459 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝑀) → 𝑖𝑀)
196195ad2antlr 765 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑀) → 𝑖𝑀)
197 neqne 2904 . . . . . . . . . . . . . 14 𝑖 = 𝑀𝑖𝑀)
198197necomd 2951 . . . . . . . . . . . . 13 𝑖 = 𝑀𝑀𝑖)
199198adantl 473 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑀) → 𝑀𝑖)
200191, 194, 196, 199leneltd 10304 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑀) → 𝑖 < 𝑀)
201102adantr 472 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → (𝑄𝑖) ∈ ℝ)
20285, 180sseldi 3707 . . . . . . . . . . . . 13 (𝜑 → (𝑄𝑀) ∈ ℝ)
203202ad2antrr 764 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → (𝑄𝑀) ∈ ℝ)
204 simpr 479 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → 𝑖 < 𝑀)
20591ad2antrr 764 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → 𝑄 Isom < , < ((0...𝑀), 𝐻))
206 simpr 479 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0...𝑀)) → 𝑖 ∈ (0...𝑀))
207179adantr 472 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0...𝑀)) → 𝑀 ∈ (0...𝑀))
208206, 207jca 555 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑖 ∈ (0...𝑀) ∧ 𝑀 ∈ (0...𝑀)))
209208adantr 472 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → (𝑖 ∈ (0...𝑀) ∧ 𝑀 ∈ (0...𝑀)))
210 isorel 6691 . . . . . . . . . . . . . 14 ((𝑄 Isom < , < ((0...𝑀), 𝐻) ∧ (𝑖 ∈ (0...𝑀) ∧ 𝑀 ∈ (0...𝑀))) → (𝑖 < 𝑀 ↔ (𝑄𝑖) < (𝑄𝑀)))
211205, 209, 210syl2anc 696 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → (𝑖 < 𝑀 ↔ (𝑄𝑖) < (𝑄𝑀)))
212204, 211mpbid 222 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → (𝑄𝑖) < (𝑄𝑀))
213201, 203, 212ltled 10298 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → (𝑄𝑖) ≤ (𝑄𝑀))
214200, 213syldan 488 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑀) → (𝑄𝑖) ≤ (𝑄𝑀))
215190, 214pm2.61dan 867 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ≤ (𝑄𝑀))
2162153adant3 1124 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → (𝑄𝑖) ≤ (𝑄𝑀))
217186, 216eqbrtrd 4782 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → π ≤ (𝑄𝑀))
2182023ad2ant1 1125 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → (𝑄𝑀) ∈ ℝ)
21912a1i 11 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → π ∈ ℝ)
220218, 219letri3d 10292 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → ((𝑄𝑀) = π ↔ ((𝑄𝑀) ≤ π ∧ π ≤ (𝑄𝑀))))
221183, 217, 220mpbir2and 995 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → (𝑄𝑀) = π)
222221rexlimdv3a 3135 . . . . 5 (𝜑 → (∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = π → (𝑄𝑀) = π))
223176, 222mpd 15 . . . 4 (𝜑 → (𝑄𝑀) = π)
224 elfzoelz 12585 . . . . . . . . 9 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ ℤ)
225224zred 11595 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ ℝ)
226225ltp1d 11067 . . . . . . 7 (𝑖 ∈ (0..^𝑀) → 𝑖 < (𝑖 + 1))
227226adantl 473 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 < (𝑖 + 1))
228 elfzofz 12600 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
229 fzofzp1 12680 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
230228, 229jca 555 . . . . . . 7 (𝑖 ∈ (0..^𝑀) → (𝑖 ∈ (0...𝑀) ∧ (𝑖 + 1) ∈ (0...𝑀)))
231 isorel 6691 . . . . . . 7 ((𝑄 Isom < , < ((0...𝑀), 𝐻) ∧ (𝑖 ∈ (0...𝑀) ∧ (𝑖 + 1) ∈ (0...𝑀))) → (𝑖 < (𝑖 + 1) ↔ (𝑄𝑖) < (𝑄‘(𝑖 + 1))))
23291, 230, 231syl2an 495 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 < (𝑖 + 1) ↔ (𝑄𝑖) < (𝑄‘(𝑖 + 1))))
233227, 232mpbid 222 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
234233ralrimiva 3068 . . . 4 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
235171, 223, 234jca31 558 . . 3 (𝜑 → (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
2365fourierdlem2 40746 . . . 4 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
23767, 236syl 17 . . 3 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
23899, 235, 237mpbir2and 995 . 2 (𝜑𝑄 ∈ (𝑃𝑀))
239 fourierdlem102.g . . . . 5 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))
240239reseq1i 5499 . . . 4 (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
24114a1i 11 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → -π ∈ ℝ*)
24215a1i 11 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → π ∈ ℝ*)
243177adantr 472 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π))
244 simpr 479 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
245241, 242, 243, 244fourierdlem27 40771 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (-π(,)π))
246245resabs1d 5538 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
247240, 246syl5req 2771 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
248 fourierdlem102.gcn . . . 4 (𝜑𝐺 ∈ (dom 𝐺cn→ℂ))
249248, 5, 67, 238, 9, 165fourierdlem38 40782 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
250247, 249eqeltrd 2803 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
251247oveq1d 6780 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
252248adantr 472 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐺 ∈ (dom 𝐺cn→ℂ))
253 fourierdlem102.rlim . . . . . 6 ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
254253adantlr 753 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
255 fourierdlem102.llim . . . . . 6 ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
256255adantlr 753 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
25791adantr 472 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄 Isom < , < ((0...𝑀), 𝐻))
258257, 92, 933syl 18 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶𝐻)
25979adantr 472 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐸𝑋) ∈ ℝ)
260257, 163, 1643syl 18 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ran 𝑄 = 𝐻)
261252, 254, 256, 257, 258, 244, 233, 245, 259, 9, 260fourierdlem46 40789 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ≠ ∅ ∧ ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ≠ ∅))
262261simpld 477 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ≠ ∅)
263251, 262eqnetrd 2963 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ≠ ∅)
264247oveq1d 6780 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
265261simprd 482 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ≠ ∅)
266264, 265eqnetrd 2963 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ≠ ∅)
2671, 2, 3, 4, 5, 67, 238, 250, 263, 266fourierdlem94 40837 1 (𝜑 → (((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ≠ ∅ ∧ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1596   ∈ wcel 2103   ≠ wne 2896  ∀wral 3014  ∃wrex 3015  {crab 3018  Vcvv 3304   ∖ cdif 3677   ∪ cun 3678   ⊆ wss 3680  ∅c0 4023  {cpr 4287  {ctp 4289   class class class wbr 4760   ↦ cmpt 4837  dom cdm 5218  ran crn 5219   ↾ cres 5220  ℩cio 5962   Fn wfn 5996  ⟶wf 5997  –onto→wfo 5999  –1-1-onto→wf1o 6000  ‘cfv 6001   Isom wiso 6002  (class class class)co 6765   ↑𝑚 cmap 7974  Fincfn 8072  ℂcc 10047  ℝcr 10048  0cc0 10049  1c1 10050   + caddc 10052   · cmul 10054  +∞cpnf 10184  -∞cmnf 10185  ℝ*cxr 10186   < clt 10187   ≤ cle 10188   − cmin 10379  -cneg 10380   / cdiv 10797  ℕcn 11133  2c2 11183  ℕ0cn0 11405  ℤcz 11490  ℤ≥cuz 11800  (,)cioo 12289  (,]cioc 12290  [,)cico 12291  [,]cicc 12292  ...cfz 12440  ..^cfzo 12580  ⌊cfl 12706  ♯chash 13232  πcpi 14917  –cn→ccncf 22801   limℂ climc 23746   D cdv 23747 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-inf2 8651  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127  ax-addf 10128  ax-mulf 10129 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-fal 1602  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-iin 4631  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-se 5178  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-isom 6010  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-of 7014  df-om 7183  df-1st 7285  df-2nd 7286  df-supp 7416  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-2o 7681  df-oadd 7684  df-er 7862  df-map 7976  df-pm 7977  df-ixp 8026  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-fsupp 8392  df-fi 8433  df-sup 8464  df-inf 8465  df-oi 8531  df-card 8878  df-cda 9103  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-4 11194  df-5 11195  df-6 11196  df-7 11197  df-8 11198  df-9 11199  df-n0 11406  df-xnn0 11477  df-z 11491  df-dec 11607  df-uz 11801  df-q 11903  df-rp 11947  df-xneg 12060  df-xadd 12061  df-xmul 12062  df-ioo 12293  df-ioc 12294  df-ico 12295  df-icc 12296  df-fz 12441  df-fzo 12581  df-fl 12708  df-seq 12917  df-exp 12976  df-fac 13176  df-bc 13205  df-hash 13233  df-shft 13927  df-cj 13959  df-re 13960  df-im 13961  df-sqrt 14095  df-abs 14096  df-limsup 14322  df-clim 14339  df-rlim 14340  df-sum 14537  df-ef 14918  df-sin 14920  df-cos 14921  df-pi 14923  df-struct 15982  df-ndx 15983  df-slot 15984  df-base 15986  df-sets 15987  df-ress 15988  df-plusg 16077  df-mulr 16078  df-starv 16079  df-sca 16080  df-vsca 16081  df-ip 16082  df-tset 16083  df-ple 16084  df-ds 16087  df-unif 16088  df-hom 16089  df-cco 16090  df-rest 16206  df-topn 16207  df-0g 16225  df-gsum 16226  df-topgen 16227  df-pt 16228  df-prds 16231  df-xrs 16285  df-qtop 16290  df-imas 16291  df-xps 16293  df-mre 16369  df-mrc 16370  df-acs 16372  df-mgm 17364  df-sgrp 17406  df-mnd 17417  df-submnd 17458  df-mulg 17663  df-cntz 17871  df-cmn 18316  df-psmet 19861  df-xmet 19862  df-met 19863  df-bl 19864  df-mopn 19865  df-fbas 19866  df-fg 19867  df-cnfld 19870  df-top 20822  df-topon 20839  df-topsp 20860  df-bases 20873  df-cld 20946  df-ntr 20947  df-cls 20948  df-nei 21025  df-lp 21063  df-perf 21064  df-cn 21154  df-cnp 21155  df-haus 21242  df-cmp 21313  df-tx 21488  df-hmeo 21681  df-fil 21772  df-fm 21864  df-flim 21865  df-flf 21866  df-xms 22247  df-ms 22248  df-tms 22249  df-cncf 22803  df-limc 23750  df-dv 23751 This theorem is referenced by:  fourierdlem106  40849
 Copyright terms: Public domain W3C validator