Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sineq0ALT Structured version   Visualization version   GIF version

Theorem sineq0ALT 41291
Description: A complex number whose sine is zero is an integer multiple of π. The Virtual Deduction form of the proof is https://us.metamath.org/other/completeusersproof/sineq0altvd.html. The Metamath form of the proof is sineq0ALT 41291. The Virtual Deduction proof is based on Mario Carneiro's revision of Norm Megill's proof of sineq0 25109. The Virtual Deduction proof is verified by automatically transforming it into the Metamath form of the proof using completeusersproof, which is verified by the Metamath program. The proof of https://us.metamath.org/other/completeusersproof/sineq0altro.html 25109 is a form of the completed proof which preserves the Virtual Deduction proof's step numbers and their ordering. (Contributed by Alan Sare, 13-Jun-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sineq0ALT (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (𝐴 / π) ∈ ℤ))

Proof of Theorem sineq0ALT
StepHypRef Expression
1 pire 25044 . . . . 5 π ∈ ℝ
2 pipos 25046 . . . . 5 0 < π
31, 2elrpii 12393 . . . 4 π ∈ ℝ+
4 2ne0 11742 . . . . . 6 2 ≠ 0
54a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 2 ≠ 0)
6 2cn 11713 . . . . . . 7 2 ∈ ℂ
7 2re 11712 . . . . . . . 8 2 ∈ ℝ
87a1i 11 . . . . . . 7 (2 ∈ ℂ → 2 ∈ ℝ)
96, 8ax-mp 5 . . . . . 6 2 ∈ ℝ
109a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 2 ∈ ℝ)
11 id 22 . . . . . 6 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
1211adantr 483 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 𝐴 ∈ ℂ)
136a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → 2 ∈ ℂ)
1413, 11mulcld 10661 . . . . . 6 (𝐴 ∈ ℂ → (2 · 𝐴) ∈ ℂ)
15 ax-icn 10596 . . . . . . . . . . . . . . 15 i ∈ ℂ
1615a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → i ∈ ℂ)
1713, 16, 11mul12d 10849 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (2 · (i · 𝐴)) = (i · (2 · 𝐴)))
1816, 11mulcld 10661 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
19182timesd 11881 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (2 · (i · 𝐴)) = ((i · 𝐴) + (i · 𝐴)))
2017, 19eqtr3d 2858 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (i · (2 · 𝐴)) = ((i · 𝐴) + (i · 𝐴)))
2120fveq2d 6674 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (exp‘(i · (2 · 𝐴))) = (exp‘((i · 𝐴) + (i · 𝐴))))
22 efadd 15447 . . . . . . . . . . . 12 (((i · 𝐴) ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (exp‘((i · 𝐴) + (i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
2318, 18, 22syl2anc 586 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (exp‘((i · 𝐴) + (i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
2421, 23eqtrd 2856 . . . . . . . . . 10 (𝐴 ∈ ℂ → (exp‘(i · (2 · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
2524adantr 483 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (exp‘(i · (2 · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
26 sinval 15475 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
27 id 22 . . . . . . . . . . . . . . 15 ((sin‘𝐴) = 0 → (sin‘𝐴) = 0)
2826, 27sylan9req 2877 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0)
29 efcl 15436 . . . . . . . . . . . . . . . . . 18 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
3018, 29syl 17 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
31 negicn 10887 . . . . . . . . . . . . . . . . . . . 20 -i ∈ ℂ
3231a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → -i ∈ ℂ)
3332, 11mulcld 10661 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ)
34 efcl 15436 . . . . . . . . . . . . . . . . . 18 ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
3533, 34syl 17 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
3630, 35subcld 10997 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ)
37 2mulicn 11861 . . . . . . . . . . . . . . . . 17 (2 · i) ∈ ℂ
3837a1i 11 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (2 · i) ∈ ℂ)
39 2muline0 11862 . . . . . . . . . . . . . . . . 17 (2 · i) ≠ 0
4039a1i 11 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (2 · i) ≠ 0)
4136, 38, 40diveq0ad 11426 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0 ↔ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0))
4241adantr 483 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0 ↔ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0))
4328, 42mpbid 234 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0)
4430, 35subeq0ad 11007 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0 ↔ (exp‘(i · 𝐴)) = (exp‘(-i · 𝐴))))
4544adantr 483 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0 ↔ (exp‘(i · 𝐴)) = (exp‘(-i · 𝐴))))
4643, 45mpbid 234 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (exp‘(i · 𝐴)) = (exp‘(-i · 𝐴)))
4746oveq2d 7172 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
48 efadd 15447 . . . . . . . . . . . . 13 (((i · 𝐴) ∈ ℂ ∧ (-i · 𝐴) ∈ ℂ) → (exp‘((i · 𝐴) + (-i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
4918, 33, 48syl2anc 586 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (exp‘((i · 𝐴) + (-i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
5049adantr 483 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (exp‘((i · 𝐴) + (-i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
5147, 50eqtr4d 2859 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) = (exp‘((i · 𝐴) + (-i · 𝐴))))
5215negidi 10955 . . . . . . . . . . . . . . 15 (i + -i) = 0
5352oveq1i 7166 . . . . . . . . . . . . . 14 ((i + -i) · 𝐴) = (0 · 𝐴)
5416, 32, 11adddird 10666 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((i + -i) · 𝐴) = ((i · 𝐴) + (-i · 𝐴)))
5553, 54syl5reqr 2871 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → ((i · 𝐴) + (-i · 𝐴)) = (0 · 𝐴))
5611mul02d 10838 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (0 · 𝐴) = 0)
5755, 56eqtrd 2856 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((i · 𝐴) + (-i · 𝐴)) = 0)
5857fveq2d 6674 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (exp‘((i · 𝐴) + (-i · 𝐴))) = (exp‘0))
5958adantr 483 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (exp‘((i · 𝐴) + (-i · 𝐴))) = (exp‘0))
60 ef0 15444 . . . . . . . . . . 11 (exp‘0) = 1
6160a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (exp‘0) = 1)
6251, 59, 613eqtrd 2860 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) = 1)
6325, 62eqtrd 2856 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (exp‘(i · (2 · 𝐴))) = 1)
6463fveq2d 6674 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(exp‘(i · (2 · 𝐴)))) = (abs‘1))
65 abs1 14657 . . . . . . 7 (abs‘1) = 1
6664, 65syl6eq 2872 . . . . . 6 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(exp‘(i · (2 · 𝐴)))) = 1)
67 absefib 15551 . . . . . . . 8 ((2 · 𝐴) ∈ ℂ → ((2 · 𝐴) ∈ ℝ ↔ (abs‘(exp‘(i · (2 · 𝐴)))) = 1))
6867biimparc 482 . . . . . . 7 (((abs‘(exp‘(i · (2 · 𝐴)))) = 1 ∧ (2 · 𝐴) ∈ ℂ) → (2 · 𝐴) ∈ ℝ)
6968ancoms 461 . . . . . 6 (((2 · 𝐴) ∈ ℂ ∧ (abs‘(exp‘(i · (2 · 𝐴)))) = 1) → (2 · 𝐴) ∈ ℝ)
7014, 66, 69syl2an2r 683 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (2 · 𝐴) ∈ ℝ)
71 mulre 14480 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 2 ∈ ℝ ∧ 2 ≠ 0) → (𝐴 ∈ ℝ ↔ (2 · 𝐴) ∈ ℝ))
72714animp1 40851 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 2 ∈ ℝ) ∧ 2 ≠ 0) ∧ (2 · 𝐴) ∈ ℝ) → 𝐴 ∈ ℝ)
73724an31 40852 . . . . 5 ((((2 ≠ 0 ∧ 2 ∈ ℝ) ∧ 𝐴 ∈ ℂ) ∧ (2 · 𝐴) ∈ ℝ) → 𝐴 ∈ ℝ)
745, 10, 12, 70, 73syl1111anc 837 . . . 4 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 𝐴 ∈ ℝ)
753a1i 11 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → π ∈ ℝ+)
7674, 75modcld 13244 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) ∈ ℝ)
7776recnd 10669 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) ∈ ℂ)
7877sincld 15483 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (sin‘(𝐴 mod π)) ∈ ℂ)
791a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → π ∈ ℝ)
80 0re 10643 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℝ
8180, 1, 2ltleii 10763 . . . . . . . . . . . . . . . . . . . . 21 0 ≤ π
82 gt0ne0 11105 . . . . . . . . . . . . . . . . . . . . . . 23 ((π ∈ ℝ ∧ 0 < π) → π ≠ 0)
83823adant3 1128 . . . . . . . . . . . . . . . . . . . . . 22 ((π ∈ ℝ ∧ 0 < π ∧ 0 ≤ π) → π ≠ 0)
84833com23 1122 . . . . . . . . . . . . . . . . . . . . 21 ((π ∈ ℝ ∧ 0 ≤ π ∧ 0 < π) → π ≠ 0)
851, 81, 2, 84mp3an 1457 . . . . . . . . . . . . . . . . . . . 20 π ≠ 0
8685a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → π ≠ 0)
8774, 79, 86redivcld 11468 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 / π) ∈ ℝ)
8887flcld 13169 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (⌊‘(𝐴 / π)) ∈ ℤ)
8988znegcld 12090 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → -(⌊‘(𝐴 / π)) ∈ ℤ)
90 abssinper 25106 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ -(⌊‘(𝐴 / π)) ∈ ℤ) → (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π)))) = (abs‘(sin‘𝐴)))
9190eqcomd 2827 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ -(⌊‘(𝐴 / π)) ∈ ℤ) → (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π)))))
9291ex 415 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (-(⌊‘(𝐴 / π)) ∈ ℤ → (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π))))))
9392adantr 483 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (-(⌊‘(𝐴 / π)) ∈ ℤ → (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π))))))
9489, 93mpd 15 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π)))))
9588zcnd 12089 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (⌊‘(𝐴 / π)) ∈ ℂ)
9695negcld 10984 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → -(⌊‘(𝐴 / π)) ∈ ℂ)
971recni 10655 . . . . . . . . . . . . . . . . . . . . 21 π ∈ ℂ
9897a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → π ∈ ℂ)
9996, 98mulcld 10661 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (-(⌊‘(𝐴 / π)) · π) ∈ ℂ)
10098, 95mulcld 10661 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (π · (⌊‘(𝐴 / π))) ∈ ℂ)
101100negcld 10984 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → -(π · (⌊‘(𝐴 / π))) ∈ ℂ)
10295, 98mulneg1d 11093 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (-(⌊‘(𝐴 / π)) · π) = -((⌊‘(𝐴 / π)) · π))
10395, 98mulcomd 10662 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((⌊‘(𝐴 / π)) · π) = (π · (⌊‘(𝐴 / π))))
104103negeqd 10880 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → -((⌊‘(𝐴 / π)) · π) = -(π · (⌊‘(𝐴 / π))))
105102, 104eqtrd 2856 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (-(⌊‘(𝐴 / π)) · π) = -(π · (⌊‘(𝐴 / π))))
106 oveq2 7164 . . . . . . . . . . . . . . . . . . . . 21 ((-(⌊‘(𝐴 / π)) · π) = -(π · (⌊‘(𝐴 / π))) → (𝐴 + (-(⌊‘(𝐴 / π)) · π)) = (𝐴 + -(π · (⌊‘(𝐴 / π)))))
107106ad3antrrr 728 . . . . . . . . . . . . . . . . . . . 20 (((((-(⌊‘(𝐴 / π)) · π) = -(π · (⌊‘(𝐴 / π))) ∧ -(π · (⌊‘(𝐴 / π))) ∈ ℂ) ∧ (-(⌊‘(𝐴 / π)) · π) ∈ ℂ) ∧ 𝐴 ∈ ℂ) → (𝐴 + (-(⌊‘(𝐴 / π)) · π)) = (𝐴 + -(π · (⌊‘(𝐴 / π)))))
1081074an4132 40853 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℂ ∧ (-(⌊‘(𝐴 / π)) · π) ∈ ℂ) ∧ -(π · (⌊‘(𝐴 / π))) ∈ ℂ) ∧ (-(⌊‘(𝐴 / π)) · π) = -(π · (⌊‘(𝐴 / π)))) → (𝐴 + (-(⌊‘(𝐴 / π)) · π)) = (𝐴 + -(π · (⌊‘(𝐴 / π)))))
10912, 99, 101, 105, 108syl1111anc 837 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 + (-(⌊‘(𝐴 / π)) · π)) = (𝐴 + -(π · (⌊‘(𝐴 / π)))))
11012, 100negsubd 11003 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 + -(π · (⌊‘(𝐴 / π)))) = (𝐴 − (π · (⌊‘(𝐴 / π)))))
111109, 110eqtrd 2856 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 + (-(⌊‘(𝐴 / π)) · π)) = (𝐴 − (π · (⌊‘(𝐴 / π)))))
112111fveq2d 6674 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π))) = (sin‘(𝐴 − (π · (⌊‘(𝐴 / π))))))
113112fveq2d 6674 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π)))) = (abs‘(sin‘(𝐴 − (π · (⌊‘(𝐴 / π)))))))
11494, 113eqtrd 2856 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 − (π · (⌊‘(𝐴 / π)))))))
115 modval 13240 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → (𝐴 mod π) = (𝐴 − (π · (⌊‘(𝐴 / π)))))
116115fveq2d 6674 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → (sin‘(𝐴 mod π)) = (sin‘(𝐴 − (π · (⌊‘(𝐴 / π))))))
117116fveq2d 6674 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → (abs‘(sin‘(𝐴 mod π))) = (abs‘(sin‘(𝐴 − (π · (⌊‘(𝐴 / π)))))))
1183, 117mpan2 689 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → (abs‘(sin‘(𝐴 mod π))) = (abs‘(sin‘(𝐴 − (π · (⌊‘(𝐴 / π)))))))
11974, 118syl 17 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘(𝐴 mod π))) = (abs‘(sin‘(𝐴 − (π · (⌊‘(𝐴 / π)))))))
120114, 119eqtr4d 2859 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 mod π))))
12127fveq2d 6674 . . . . . . . . . . . . . . 15 ((sin‘𝐴) = 0 → (abs‘(sin‘𝐴)) = (abs‘0))
122 abs0 14645 . . . . . . . . . . . . . . 15 (abs‘0) = 0
123121, 122syl6eq 2872 . . . . . . . . . . . . . 14 ((sin‘𝐴) = 0 → (abs‘(sin‘𝐴)) = 0)
124123adantl 484 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘𝐴)) = 0)
125120, 124eqtr3d 2858 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘(𝐴 mod π))) = 0)
12678, 125abs00d 14806 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (sin‘(𝐴 mod π)) = 0)
127 notnotb 317 . . . . . . . . . . . . 13 ((sin‘(𝐴 mod π)) = 0 ↔ ¬ ¬ (sin‘(𝐴 mod π)) = 0)
128127bicomi 226 . . . . . . . . . . . 12 (¬ ¬ (sin‘(𝐴 mod π)) = 0 ↔ (sin‘(𝐴 mod π)) = 0)
129 ltne 10737 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ 0 < (sin‘(𝐴 mod π))) → (sin‘(𝐴 mod π)) ≠ 0)
130129neneqd 3021 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ 0 < (sin‘(𝐴 mod π))) → ¬ (sin‘(𝐴 mod π)) = 0)
131130expcom 416 . . . . . . . . . . . . . 14 (0 < (sin‘(𝐴 mod π)) → (0 ∈ ℝ → ¬ (sin‘(𝐴 mod π)) = 0))
13280, 131mpi 20 . . . . . . . . . . . . 13 (0 < (sin‘(𝐴 mod π)) → ¬ (sin‘(𝐴 mod π)) = 0)
133132con3i 157 . . . . . . . . . . . 12 (¬ ¬ (sin‘(𝐴 mod π)) = 0 → ¬ 0 < (sin‘(𝐴 mod π)))
134128, 133sylbir 237 . . . . . . . . . . 11 ((sin‘(𝐴 mod π)) = 0 → ¬ 0 < (sin‘(𝐴 mod π)))
135126, 134syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ¬ 0 < (sin‘(𝐴 mod π)))
136 sinq12gt0 25093 . . . . . . . . . 10 ((𝐴 mod π) ∈ (0(,)π) → 0 < (sin‘(𝐴 mod π)))
137135, 136nsyl 142 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ¬ (𝐴 mod π) ∈ (0(,)π))
13880rexri 10699 . . . . . . . . . . 11 0 ∈ ℝ*
1391rexri 10699 . . . . . . . . . . 11 π ∈ ℝ*
140 elioo2 12780 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → ((𝐴 mod π) ∈ (0(,)π) ↔ ((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π)))
141138, 139, 140mp2an 690 . . . . . . . . . 10 ((𝐴 mod π) ∈ (0(,)π) ↔ ((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π))
142141notbii 322 . . . . . . . . 9 (¬ (𝐴 mod π) ∈ (0(,)π) ↔ ¬ ((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π))
143137, 142sylib 220 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ¬ ((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π))
144 3anan12 1092 . . . . . . . . 9 (((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π) ↔ (0 < (𝐴 mod π) ∧ ((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π)))
145144notbii 322 . . . . . . . 8 (¬ ((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π) ↔ ¬ (0 < (𝐴 mod π) ∧ ((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π)))
146143, 145sylib 220 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ¬ (0 < (𝐴 mod π) ∧ ((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π)))
147 modlt 13249 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → (𝐴 mod π) < π)
148147ancoms 461 . . . . . . . . 9 ((π ∈ ℝ+𝐴 ∈ ℝ) → (𝐴 mod π) < π)
1493, 74, 148sylancr 589 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) < π)
15076, 149jca 514 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π))
151 not12an2impnot1 40922 . . . . . . 7 ((¬ (0 < (𝐴 mod π) ∧ ((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π)) ∧ ((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π)) → ¬ 0 < (𝐴 mod π))
152146, 150, 151syl2anc 586 . . . . . 6 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ¬ 0 < (𝐴 mod π))
153 modge0 13248 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → 0 ≤ (𝐴 mod π))
154153ancoms 461 . . . . . . . 8 ((π ∈ ℝ+𝐴 ∈ ℝ) → 0 ≤ (𝐴 mod π))
1553, 74, 154sylancr 589 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 0 ≤ (𝐴 mod π))
156 leloe 10727 . . . . . . . . 9 ((0 ∈ ℝ ∧ (𝐴 mod π) ∈ ℝ) → (0 ≤ (𝐴 mod π) ↔ (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π))))
157156biimp3a 1465 . . . . . . . 8 ((0 ∈ ℝ ∧ (𝐴 mod π) ∈ ℝ ∧ 0 ≤ (𝐴 mod π)) → (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π)))
158157idiALT 40831 . . . . . . 7 ((0 ∈ ℝ ∧ (𝐴 mod π) ∈ ℝ ∧ 0 ≤ (𝐴 mod π)) → (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π)))
15980, 76, 155, 158mp3an2i 1462 . . . . . 6 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π)))
160 pm2.53 847 . . . . . . . 8 ((0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π)) → (¬ 0 < (𝐴 mod π) → 0 = (𝐴 mod π)))
161160imp 409 . . . . . . 7 (((0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π)) ∧ ¬ 0 < (𝐴 mod π)) → 0 = (𝐴 mod π))
162161ancoms 461 . . . . . 6 ((¬ 0 < (𝐴 mod π) ∧ (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π))) → 0 = (𝐴 mod π))
163152, 159, 162syl2anc 586 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 0 = (𝐴 mod π))
164163eqcomd 2827 . . . 4 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) = 0)
165 mod0 13245 . . . . . 6 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → ((𝐴 mod π) = 0 ↔ (𝐴 / π) ∈ ℤ))
166165biimp3a 1465 . . . . 5 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+ ∧ (𝐴 mod π) = 0) → (𝐴 / π) ∈ ℤ)
1671663com12 1119 . . . 4 ((π ∈ ℝ+𝐴 ∈ ℝ ∧ (𝐴 mod π) = 0) → (𝐴 / π) ∈ ℤ)
1683, 74, 164, 167mp3an2i 1462 . . 3 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 / π) ∈ ℤ)
169168ex 415 . 2 (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 → (𝐴 / π) ∈ ℤ))
17097a1i 11 . . . . . 6 (𝐴 ∈ ℂ → π ∈ ℂ)
17185a1i 11 . . . . . 6 (𝐴 ∈ ℂ → π ≠ 0)
17211, 170, 171divcan1d 11417 . . . . 5 (𝐴 ∈ ℂ → ((𝐴 / π) · π) = 𝐴)
173172fveq2d 6674 . . . 4 (𝐴 ∈ ℂ → (sin‘((𝐴 / π) · π)) = (sin‘𝐴))
174 id 22 . . . . 5 ((𝐴 / π) ∈ ℤ → (𝐴 / π) ∈ ℤ)
175 sinkpi 25107 . . . . 5 ((𝐴 / π) ∈ ℤ → (sin‘((𝐴 / π) · π)) = 0)
176174, 175syl 17 . . . 4 ((𝐴 / π) ∈ ℤ → (sin‘((𝐴 / π) · π)) = 0)
177173, 176sylan9req 2877 . . 3 ((𝐴 ∈ ℂ ∧ (𝐴 / π) ∈ ℤ) → (sin‘𝐴) = 0)
178177ex 415 . 2 (𝐴 ∈ ℂ → ((𝐴 / π) ∈ ℤ → (sin‘𝐴) = 0))
179169, 178impbid 214 1 (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (𝐴 / π) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3016   class class class wbr 5066  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538  ici 10539   + caddc 10540   · cmul 10542  *cxr 10674   < clt 10675  cle 10676  cmin 10870  -cneg 10871   / cdiv 11297  2c2 11693  cz 11982  +crp 12390  (,)cioo 12739  cfl 13161   mod cmo 13238  abscabs 14593  expce 15415  sincsin 15417  πcpi 15420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-sin 15423  df-cos 15424  df-pi 15426  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-limc 24464  df-dv 24465
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator