Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem14 Structured version   Visualization version   GIF version

Theorem stirlinglem14 38763
Description: The sequence 𝐴 converges to a positive real. This proves that the Stirling's formula converges to the factorial, up to a constant. In another theorem, using Wallis' formula for π& , such constant is exactly determined, thus proving the Stirling's formula. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem14.1 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
stirlinglem14.2 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
Assertion
Ref Expression
stirlinglem14 𝑐 ∈ ℝ+ 𝐴𝑐
Distinct variable group:   𝐴,𝑐
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛,𝑐)

Proof of Theorem stirlinglem14
Dummy variables 𝑑 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stirlinglem14.1 . . 3 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
2 stirlinglem14.2 . . 3 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
31, 2stirlinglem13 38762 . 2 𝑑 ∈ ℝ 𝐵𝑑
4 simpl 471 . . . . 5 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → 𝑑 ∈ ℝ)
54rpefcld 14622 . . . 4 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → (exp‘𝑑) ∈ ℝ+)
6 nnuz 11557 . . . . . 6 ℕ = (ℤ‘1)
7 1zzd 11243 . . . . . 6 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → 1 ∈ ℤ)
8 efcn 23945 . . . . . . 7 exp ∈ (ℂ–cn→ℂ)
98a1i 11 . . . . . 6 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → exp ∈ (ℂ–cn→ℂ))
10 nnnn0 11148 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
11 faccl 12889 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → (!‘𝑛) ∈ ℕ)
12 nncn 10877 . . . . . . . . . . . . 13 ((!‘𝑛) ∈ ℕ → (!‘𝑛) ∈ ℂ)
1310, 11, 123syl 18 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (!‘𝑛) ∈ ℂ)
14 2cnd 10942 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 2 ∈ ℂ)
15 nncn 10877 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
1614, 15mulcld 9916 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℂ)
1716sqrtcld 13972 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (√‘(2 · 𝑛)) ∈ ℂ)
18 epr 14723 . . . . . . . . . . . . . . . . 17 e ∈ ℝ+
19 rpcn 11675 . . . . . . . . . . . . . . . . 17 (e ∈ ℝ+ → e ∈ ℂ)
2018, 19ax-mp 5 . . . . . . . . . . . . . . . 16 e ∈ ℂ
2120a1i 11 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → e ∈ ℂ)
22 0re 9896 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
23 epos 14722 . . . . . . . . . . . . . . . . 17 0 < e
2422, 23gtneii 10000 . . . . . . . . . . . . . . . 16 e ≠ 0
2524a1i 11 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → e ≠ 0)
2615, 21, 25divcld 10652 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛 / e) ∈ ℂ)
2726, 10expcld 12827 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝑛 / e)↑𝑛) ∈ ℂ)
2817, 27mulcld 9916 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℂ)
29 2rp 11671 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ+
3029a1i 11 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 2 ∈ ℝ+)
31 nnrp 11676 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
3230, 31rpmulcld 11722 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℝ+)
3332sqrtgt0d 13947 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 0 < (√‘(2 · 𝑛)))
3433gt0ne0d 10443 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (√‘(2 · 𝑛)) ≠ 0)
35 nnne0 10902 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
3615, 21, 35, 25divne0d 10668 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛 / e) ≠ 0)
37 nnz 11234 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
3826, 36, 37expne0d 12833 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝑛 / e)↑𝑛) ≠ 0)
3917, 27, 34, 38mulne0d 10530 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) ≠ 0)
4013, 28, 39divcld 10652 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) ∈ ℂ)
411fvmpt2 6184 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) ∈ ℂ) → (𝐴𝑛) = ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
4240, 41mpdan 698 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝐴𝑛) = ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
4342, 40eqeltrd 2687 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝐴𝑛) ∈ ℂ)
44 nnne0 10902 . . . . . . . . . . . 12 ((!‘𝑛) ∈ ℕ → (!‘𝑛) ≠ 0)
4510, 11, 443syl 18 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (!‘𝑛) ≠ 0)
4613, 28, 45, 39divne0d 10668 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) ≠ 0)
4742, 46eqnetrd 2848 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝐴𝑛) ≠ 0)
4843, 47logcld 24065 . . . . . . . 8 (𝑛 ∈ ℕ → (log‘(𝐴𝑛)) ∈ ℂ)
492, 48fmpti 6275 . . . . . . 7 𝐵:ℕ⟶ℂ
5049a1i 11 . . . . . 6 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → 𝐵:ℕ⟶ℂ)
51 simpr 475 . . . . . 6 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → 𝐵𝑑)
524recnd 9924 . . . . . 6 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → 𝑑 ∈ ℂ)
536, 7, 9, 50, 51, 52climcncf 22458 . . . . 5 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → (exp ∘ 𝐵) ⇝ (exp‘𝑑))
548elexi 3185 . . . . . . . . 9 exp ∈ V
55 nnex 10875 . . . . . . . . . . 11 ℕ ∈ V
5655mptex 6367 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛))) ∈ V
572, 56eqeltri 2683 . . . . . . . . 9 𝐵 ∈ V
5854, 57coex 6988 . . . . . . . 8 (exp ∘ 𝐵) ∈ V
5958a1i 11 . . . . . . 7 (⊤ → (exp ∘ 𝐵) ∈ V)
6055mptex 6367 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) ∈ V
611, 60eqeltri 2683 . . . . . . . 8 𝐴 ∈ V
6261a1i 11 . . . . . . 7 (⊤ → 𝐴 ∈ V)
63 1zzd 11243 . . . . . . 7 (⊤ → 1 ∈ ℤ)
642funmpt2 5826 . . . . . . . . . 10 Fun 𝐵
65 id 22 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ)
66 rabid2 3095 . . . . . . . . . . . . 13 (ℕ = {𝑛 ∈ ℕ ∣ (log‘(𝐴𝑛)) ∈ V} ↔ ∀𝑛 ∈ ℕ (log‘(𝐴𝑛)) ∈ V)
671stirlinglem2 38751 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝐴𝑛) ∈ ℝ+)
68 relogcl 24070 . . . . . . . . . . . . . 14 ((𝐴𝑛) ∈ ℝ+ → (log‘(𝐴𝑛)) ∈ ℝ)
69 elex 3184 . . . . . . . . . . . . . 14 ((log‘(𝐴𝑛)) ∈ ℝ → (log‘(𝐴𝑛)) ∈ V)
7067, 68, 693syl 18 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (log‘(𝐴𝑛)) ∈ V)
7166, 70mprgbir 2910 . . . . . . . . . . . 12 ℕ = {𝑛 ∈ ℕ ∣ (log‘(𝐴𝑛)) ∈ V}
722dmmpt 5532 . . . . . . . . . . . 12 dom 𝐵 = {𝑛 ∈ ℕ ∣ (log‘(𝐴𝑛)) ∈ V}
7371, 72eqtr4i 2634 . . . . . . . . . . 11 ℕ = dom 𝐵
7465, 73syl6eleq 2697 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ dom 𝐵)
75 fvco 6168 . . . . . . . . . 10 ((Fun 𝐵𝑘 ∈ dom 𝐵) → ((exp ∘ 𝐵)‘𝑘) = (exp‘(𝐵𝑘)))
7664, 74, 75sylancr 693 . . . . . . . . 9 (𝑘 ∈ ℕ → ((exp ∘ 𝐵)‘𝑘) = (exp‘(𝐵𝑘)))
771a1i 11 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))))
78 simpr 475 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 = 𝑘)
7978fveq2d 6091 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (!‘𝑛) = (!‘𝑘))
8078oveq2d 6542 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (2 · 𝑛) = (2 · 𝑘))
8180fveq2d 6091 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (√‘(2 · 𝑛)) = (√‘(2 · 𝑘)))
8278oveq1d 6541 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (𝑛 / e) = (𝑘 / e))
8382, 78oveq12d 6544 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((𝑛 / e)↑𝑛) = ((𝑘 / e)↑𝑘))
8481, 83oveq12d 6544 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) = ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)))
8579, 84oveq12d 6544 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
86 nnnn0 11148 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
87 faccl 12889 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
88 nncn 10877 . . . . . . . . . . . . . . . 16 ((!‘𝑘) ∈ ℕ → (!‘𝑘) ∈ ℂ)
8986, 87, 883syl 18 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (!‘𝑘) ∈ ℂ)
90 2cnd 10942 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → 2 ∈ ℂ)
91 nncn 10877 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
9290, 91mulcld 9916 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℂ)
9392sqrtcld 13972 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (√‘(2 · 𝑘)) ∈ ℂ)
9420a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → e ∈ ℂ)
9524a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → e ≠ 0)
9691, 94, 95divcld 10652 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (𝑘 / e) ∈ ℂ)
9796, 86expcld 12827 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → ((𝑘 / e)↑𝑘) ∈ ℂ)
9893, 97mulcld 9916 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)) ∈ ℂ)
9929a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → 2 ∈ ℝ+)
100 nnrp 11676 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
10199, 100rpmulcld 11722 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℝ+)
102101sqrtgt0d 13947 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 0 < (√‘(2 · 𝑘)))
103102gt0ne0d 10443 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (√‘(2 · 𝑘)) ≠ 0)
104 nnne0 10902 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
10591, 94, 104, 95divne0d 10668 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (𝑘 / e) ≠ 0)
106 nnz 11234 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
10796, 105, 106expne0d 12833 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → ((𝑘 / e)↑𝑘) ≠ 0)
10893, 97, 103, 107mulne0d 10530 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)) ≠ 0)
10989, 98, 108divcld 10652 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))) ∈ ℂ)
11077, 85, 65, 109fvmptd 6181 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝐴𝑘) = ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
111110, 109eqeltrd 2687 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝐴𝑘) ∈ ℂ)
112 nnne0 10902 . . . . . . . . . . . . . . 15 ((!‘𝑘) ∈ ℕ → (!‘𝑘) ≠ 0)
11386, 87, 1123syl 18 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (!‘𝑘) ≠ 0)
11489, 98, 113, 108divne0d 10668 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))) ≠ 0)
115110, 114eqnetrd 2848 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝐴𝑘) ≠ 0)
116111, 115logcld 24065 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (log‘(𝐴𝑘)) ∈ ℂ)
117 nfcv 2750 . . . . . . . . . . . 12 𝑛𝑘
118 nfcv 2750 . . . . . . . . . . . . 13 𝑛log
119 nfmpt1 4669 . . . . . . . . . . . . . . 15 𝑛(𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
1201, 119nfcxfr 2748 . . . . . . . . . . . . . 14 𝑛𝐴
121120, 117nffv 6094 . . . . . . . . . . . . 13 𝑛(𝐴𝑘)
122118, 121nffv 6094 . . . . . . . . . . . 12 𝑛(log‘(𝐴𝑘))
123 fveq2 6087 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
124123fveq2d 6091 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (log‘(𝐴𝑛)) = (log‘(𝐴𝑘)))
125117, 122, 124, 2fvmptf 6193 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ (log‘(𝐴𝑘)) ∈ ℂ) → (𝐵𝑘) = (log‘(𝐴𝑘)))
126116, 125mpdan 698 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝐵𝑘) = (log‘(𝐴𝑘)))
127126fveq2d 6091 . . . . . . . . 9 (𝑘 ∈ ℕ → (exp‘(𝐵𝑘)) = (exp‘(log‘(𝐴𝑘))))
128 eflog 24071 . . . . . . . . . 10 (((𝐴𝑘) ∈ ℂ ∧ (𝐴𝑘) ≠ 0) → (exp‘(log‘(𝐴𝑘))) = (𝐴𝑘))
129111, 115, 128syl2anc 690 . . . . . . . . 9 (𝑘 ∈ ℕ → (exp‘(log‘(𝐴𝑘))) = (𝐴𝑘))
13076, 127, 1293eqtrd 2647 . . . . . . . 8 (𝑘 ∈ ℕ → ((exp ∘ 𝐵)‘𝑘) = (𝐴𝑘))
131130adantl 480 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((exp ∘ 𝐵)‘𝑘) = (𝐴𝑘))
1326, 59, 62, 63, 131climeq 14094 . . . . . 6 (⊤ → ((exp ∘ 𝐵) ⇝ (exp‘𝑑) ↔ 𝐴 ⇝ (exp‘𝑑)))
133132trud 1483 . . . . 5 ((exp ∘ 𝐵) ⇝ (exp‘𝑑) ↔ 𝐴 ⇝ (exp‘𝑑))
13453, 133sylib 206 . . . 4 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → 𝐴 ⇝ (exp‘𝑑))
135 breq2 4581 . . . . 5 (𝑐 = (exp‘𝑑) → (𝐴𝑐𝐴 ⇝ (exp‘𝑑)))
136135rspcev 3281 . . . 4 (((exp‘𝑑) ∈ ℝ+𝐴 ⇝ (exp‘𝑑)) → ∃𝑐 ∈ ℝ+ 𝐴𝑐)
1375, 134, 136syl2anc 690 . . 3 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → ∃𝑐 ∈ ℝ+ 𝐴𝑐)
138137rexlimiva 3009 . 2 (∃𝑑 ∈ ℝ 𝐵𝑑 → ∃𝑐 ∈ ℝ+ 𝐴𝑐)
1393, 138ax-mp 5 1 𝑐 ∈ ℝ+ 𝐴𝑐
Colors of variables: wff setvar class
Syntax hints:  wb 194  wa 382   = wceq 1474  wtru 1475  wcel 1976  wne 2779  wrex 2896  {crab 2899  Vcvv 3172   class class class wbr 4577  cmpt 4637  dom cdm 5027  ccom 5031  Fun wfun 5783  wf 5785  cfv 5789  (class class class)co 6526  cc 9790  cr 9791  0cc0 9792  1c1 9793   · cmul 9797   / cdiv 10535  cn 10869  2c2 10919  0cn0 11141  +crp 11666  cexp 12679  !cfa 12879  csqrt 13769  cli 14011  expce 14579  eceu 14580  cnccncf 22434  logclog 24049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-addf 9871  ax-mulf 9872
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-se 4987  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-isom 5798  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-fi 8177  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10536  df-nn 10870  df-2 10928  df-3 10929  df-4 10930  df-5 10931  df-6 10932  df-7 10933  df-8 10934  df-9 10935  df-n0 11142  df-z 11213  df-dec 11328  df-uz 11522  df-q 11623  df-rp 11667  df-xneg 11780  df-xadd 11781  df-xmul 11782  df-ioo 12008  df-ioc 12009  df-ico 12010  df-icc 12011  df-fz 12155  df-fzo 12292  df-fl 12412  df-mod 12488  df-seq 12621  df-exp 12680  df-fac 12880  df-bc 12909  df-hash 12937  df-shft 13603  df-cj 13635  df-re 13636  df-im 13637  df-sqrt 13771  df-abs 13772  df-limsup 13998  df-clim 14015  df-rlim 14016  df-sum 14213  df-ef 14585  df-e 14586  df-sin 14587  df-cos 14588  df-tan 14589  df-pi 14590  df-dvds 14770  df-struct 15645  df-ndx 15646  df-slot 15647  df-base 15648  df-sets 15649  df-ress 15650  df-plusg 15729  df-mulr 15730  df-starv 15731  df-sca 15732  df-vsca 15733  df-ip 15734  df-tset 15735  df-ple 15736  df-ds 15739  df-unif 15740  df-hom 15741  df-cco 15742  df-rest 15854  df-topn 15855  df-0g 15873  df-gsum 15874  df-topgen 15875  df-pt 15876  df-prds 15879  df-xrs 15933  df-qtop 15938  df-imas 15939  df-xps 15941  df-mre 16017  df-mrc 16018  df-acs 16020  df-mgm 17013  df-sgrp 17055  df-mnd 17066  df-submnd 17107  df-mulg 17312  df-cntz 17521  df-cmn 17966  df-psmet 19507  df-xmet 19508  df-met 19509  df-bl 19510  df-mopn 19511  df-fbas 19512  df-fg 19513  df-cnfld 19516  df-top 20468  df-bases 20469  df-topon 20470  df-topsp 20471  df-cld 20580  df-ntr 20581  df-cls 20582  df-nei 20659  df-lp 20697  df-perf 20698  df-cn 20788  df-cnp 20789  df-haus 20876  df-cmp 20947  df-tx 21122  df-hmeo 21315  df-fil 21407  df-fm 21499  df-flim 21500  df-flf 21501  df-xms 21882  df-ms 21883  df-tms 21884  df-cncf 22436  df-limc 23380  df-dv 23381  df-ulm 23879  df-log 24051  df-cxp 24052
This theorem is referenced by:  stirling  38765
  Copyright terms: Public domain W3C validator