![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1le1 | GIF version |
Description: 1 ≤ 1. Common special case. (Contributed by David A. Wheeler, 16-Jul-2016.) |
Ref | Expression |
---|---|
1le1 | ⊢ 1 ≤ 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 8020 | . 2 ⊢ 1 ∈ ℝ | |
2 | 1 | leidi 8506 | 1 ⊢ 1 ≤ 1 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 4030 1c1 7875 ≤ cle 8057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-pre-ltirr 7986 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-xp 4666 df-cnv 4668 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 |
This theorem is referenced by: nnge1 9007 1elunit 10056 fldiv4p1lem1div2 10377 expge1 10650 leexp1a 10668 bernneq 10734 faclbnd3 10817 facubnd 10819 wrdlen1 10954 sumsnf 11555 prodsnf 11738 fprodge1 11785 cos1bnd 11905 sincos1sgn 11911 eirraplem 11923 zabsle1 15156 lgslem2 15158 lgsfcl2 15163 lgseisen 15231 |
Copyright terms: Public domain | W3C validator |