ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1le1 GIF version

Theorem 1le1 8715
Description: 1 ≤ 1. Common special case. (Contributed by David A. Wheeler, 16-Jul-2016.)
Assertion
Ref Expression
1le1 1 ≤ 1

Proof of Theorem 1le1
StepHypRef Expression
1 1re 8141 . 2 1 ∈ ℝ
21leidi 8628 1 1 ≤ 1
Colors of variables: wff set class
Syntax hints:   class class class wbr 4082  1c1 7996  cle 8178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-pre-ltirr 8107
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-cnv 4726  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183
This theorem is referenced by:  nnge1  9129  1elunit  10179  fldiv4p1lem1div2  10520  expge1  10793  leexp1a  10811  bernneq  10877  faclbnd3  10960  facubnd  10962  wrdlen1  11104  wrdl1exs1  11157  sumsnf  11915  prodsnf  12098  fprodge1  12145  cos1bnd  12265  sincos1sgn  12271  eirraplem  12283  zabsle1  15672  lgslem2  15674  lgsfcl2  15679  lgseisen  15747
  Copyright terms: Public domain W3C validator