ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1le1 GIF version

Theorem 1le1 7947
Description: 1 ≤ 1. Common special case. (Contributed by David A. Wheeler, 16-Jul-2016.)
Assertion
Ref Expression
1le1 1 ≤ 1

Proof of Theorem 1le1
StepHypRef Expression
1 1re 7388 . 2 1 ∈ ℝ
21leidi 7861 1 1 ≤ 1
Colors of variables: wff set class
Syntax hints:   class class class wbr 3811  1c1 7252  cle 7424
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315  ax-cnex 7337  ax-resscn 7338  ax-1re 7340  ax-pre-ltirr 7358
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2614  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-br 3812  df-opab 3866  df-xp 4405  df-cnv 4407  df-pnf 7425  df-mnf 7426  df-xr 7427  df-ltxr 7428  df-le 7429
This theorem is referenced by:  nnge1  8337  1elunit  9297  fldiv4p1lem1div2  9599  expge1  9827  leexp1a  9845  bernneq  9907  faclbnd3  9984  facubnd  9986
  Copyright terms: Public domain W3C validator