ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1m1e0 Unicode version

Theorem 1m1e0 9179
Description:  ( 1  -  1 )  =  0 (common case). (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
1m1e0  |-  ( 1  -  1 )  =  0

Proof of Theorem 1m1e0
StepHypRef Expression
1 ax-1cn 8092 . 2  |-  1  e.  CC
21subidi 8417 1  |-  ( 1  -  1 )  =  0
Colors of variables: wff set class
Syntax hints:    = wceq 1395  (class class class)co 6001   0cc0 7999   1c1 8000    - cmin 8317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-setind 4629  ax-resscn 8091  ax-1cn 8092  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-sub 8319
This theorem is referenced by:  nnm1nn0  9410  fseq1p1m1  10290  elfzp1b  10293  elfzm1b  10294  fldiv4lem1div2  10527  frecfzennn  10648  xnn0nnen  10659  zfz1isolemsplit  11060  lsw1  11121  resqrexlemcalc3  11527  arisum  12009  geo2sum  12025  cvgratnnlemnexp  12035  nn0o  12418  exprmfct  12660  phiprmpw  12744  phiprm  12745  odzdvds  12768  prmpwdvds  12878  dvexp  15385  dvply1  15439  1sgmprm  15668  lgslem4  15682  lgsne0  15717  lgsquad2lem2  15761  2lgsoddprmlem3a  15786  iswomni0  16419
  Copyright terms: Public domain W3C validator