ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1m1e0 Unicode version

Theorem 1m1e0 9051
Description:  ( 1  -  1 )  =  0 (common case). (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
1m1e0  |-  ( 1  -  1 )  =  0

Proof of Theorem 1m1e0
StepHypRef Expression
1 ax-1cn 7965 . 2  |-  1  e.  CC
21subidi 8290 1  |-  ( 1  -  1 )  =  0
Colors of variables: wff set class
Syntax hints:    = wceq 1364  (class class class)co 5918   0cc0 7872   1c1 7873    - cmin 8190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-setind 4569  ax-resscn 7964  ax-1cn 7965  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-sub 8192
This theorem is referenced by:  nnm1nn0  9281  fseq1p1m1  10160  elfzp1b  10163  elfzm1b  10164  fldiv4lem1div2  10376  frecfzennn  10497  xnn0nnen  10508  zfz1isolemsplit  10909  resqrexlemcalc3  11160  arisum  11641  geo2sum  11657  cvgratnnlemnexp  11667  nn0o  12048  exprmfct  12276  phiprmpw  12360  phiprm  12361  odzdvds  12383  prmpwdvds  12493  dvexp  14860  lgslem4  15119  lgsne0  15154  2lgsoddprmlem3a  15195  iswomni0  15541
  Copyright terms: Public domain W3C validator