ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1m1e0 Unicode version

Theorem 1m1e0 8811
Description:  ( 1  -  1 )  =  0 (common case). (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
1m1e0  |-  ( 1  -  1 )  =  0

Proof of Theorem 1m1e0
StepHypRef Expression
1 ax-1cn 7735 . 2  |-  1  e.  CC
21subidi 8055 1  |-  ( 1  -  1 )  =  0
Colors of variables: wff set class
Syntax hints:    = wceq 1332  (class class class)co 5780   0cc0 7642   1c1 7643    - cmin 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4052  ax-pow 4104  ax-pr 4137  ax-setind 4458  ax-resscn 7734  ax-1cn 7735  ax-icn 7737  ax-addcl 7738  ax-addrcl 7739  ax-mulcl 7740  ax-addcom 7742  ax-addass 7744  ax-distr 7746  ax-i2m1 7747  ax-0id 7750  ax-rnegex 7751  ax-cnre 7753
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-dif 3076  df-un 3078  df-in 3080  df-ss 3087  df-pw 3515  df-sn 3536  df-pr 3537  df-op 3539  df-uni 3743  df-br 3936  df-opab 3996  df-id 4221  df-xp 4551  df-rel 4552  df-cnv 4553  df-co 4554  df-dm 4555  df-iota 5094  df-fun 5131  df-fv 5137  df-riota 5736  df-ov 5783  df-oprab 5784  df-mpo 5785  df-sub 7957
This theorem is referenced by:  nnm1nn0  9040  fseq1p1m1  9903  elfzp1b  9906  elfzm1b  9907  frecfzennn  10228  zfz1isolemsplit  10611  resqrexlemcalc3  10818  arisum  11297  geo2sum  11313  cvgratnnlemnexp  11323  nn0o  11633  exprmfct  11847  phiprmpw  11927  phiprm  11928  dvexp  12876
  Copyright terms: Public domain W3C validator