| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2pos | Unicode version | ||
| Description: The number 2 is positive. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 2pos |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8106 |
. . 3
| |
| 2 | 0lt1 8234 |
. . 3
| |
| 3 | 1, 1, 2, 2 | addgt0ii 8599 |
. 2
|
| 4 | df-2 9130 |
. 2
| |
| 5 | 3, 4 | breqtrri 4086 |
1
|
| Colors of variables: wff set class |
| Syntax hints: class class
class wbr 4059 (class class class)co 5967
|
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-iota 5251 df-fv 5298 df-ov 5970 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-2 9130 |
| This theorem is referenced by: 2ne0 9163 2ap0 9164 3pos 9165 halfgt0 9287 halflt1 9289 halfpos2 9302 halfnneg2 9304 nominpos 9310 avglt1 9311 avglt2 9312 nn0n0n1ge2b 9487 3halfnz 9505 2rp 9815 xleaddadd 10044 2tnp1ge0ge0 10481 mulp1mod1 10547 amgm2 11544 cos2bnd 12186 sin02gt0 12190 sincos2sgn 12192 sin4lt0 12193 epos 12207 oexpneg 12303 oddge22np1 12307 evennn02n 12308 nn0ehalf 12329 nno 12332 nn0oddm1d2 12335 nnoddm1d2 12336 flodddiv4t2lthalf 12365 sqrt2re 12600 sqrt2irrap 12617 slotsdifdsndx 13172 imasvalstrd 13217 cnfldstr 14435 bl2in 14990 pilem3 15370 pipos 15375 sinhalfpilem 15378 sincosq1lem 15412 sinq12gt0 15417 coseq00topi 15422 coseq0negpitopi 15423 tangtx 15425 sincos4thpi 15427 tan4thpi 15428 sincos6thpi 15429 cosordlem 15436 cos02pilt1 15438 gausslemma2dlem0c 15643 gausslemma2dlem1a 15650 gausslemma2dlem2 15654 gausslemma2dlem3 15655 lgseisenlem1 15662 lgseisenlem2 15663 lgseisenlem3 15664 lgsquadlem1 15669 lgsquadlem2 15670 2lgslem1a1 15678 2lgslem1a2 15679 2lgslem1c 15682 2lgslem3a1 15689 ex-fl 15861 |
| Copyright terms: Public domain | W3C validator |