| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2pos | Unicode version | ||
| Description: The number 2 is positive. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 2pos |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8141 |
. . 3
| |
| 2 | 0lt1 8269 |
. . 3
| |
| 3 | 1, 1, 2, 2 | addgt0ii 8634 |
. 2
|
| 4 | df-2 9165 |
. 2
| |
| 5 | 3, 4 | breqtrri 4109 |
1
|
| Colors of variables: wff set class |
| Syntax hints: class class
class wbr 4082 (class class class)co 6000
|
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4724 df-iota 5277 df-fv 5325 df-ov 6003 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-2 9165 |
| This theorem is referenced by: 2ne0 9198 2ap0 9199 3pos 9200 halfgt0 9322 halflt1 9324 halfpos2 9337 halfnneg2 9339 nominpos 9345 avglt1 9346 avglt2 9347 nn0n0n1ge2b 9522 3halfnz 9540 2rp 9850 xleaddadd 10079 2tnp1ge0ge0 10516 mulp1mod1 10582 s3fv0g 11318 amgm2 11624 cos2bnd 12266 sin02gt0 12270 sincos2sgn 12272 sin4lt0 12273 epos 12287 oexpneg 12383 oddge22np1 12387 evennn02n 12388 nn0ehalf 12409 nno 12412 nn0oddm1d2 12415 nnoddm1d2 12416 flodddiv4t2lthalf 12445 sqrt2re 12680 sqrt2irrap 12697 slotsdifdsndx 13253 imasvalstrd 13298 cnfldstr 14516 bl2in 15071 pilem3 15451 pipos 15456 sinhalfpilem 15459 sincosq1lem 15493 sinq12gt0 15498 coseq00topi 15503 coseq0negpitopi 15504 tangtx 15506 sincos4thpi 15508 tan4thpi 15509 sincos6thpi 15510 cosordlem 15517 cos02pilt1 15519 gausslemma2dlem0c 15724 gausslemma2dlem1a 15731 gausslemma2dlem2 15735 gausslemma2dlem3 15736 lgseisenlem1 15743 lgseisenlem2 15744 lgseisenlem3 15745 lgsquadlem1 15750 lgsquadlem2 15751 2lgslem1a1 15759 2lgslem1a2 15760 2lgslem1c 15763 2lgslem3a1 15770 ex-fl 16047 |
| Copyright terms: Public domain | W3C validator |