| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2pos | Unicode version | ||
| Description: The number 2 is positive. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 2pos |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8071 |
. . 3
| |
| 2 | 0lt1 8199 |
. . 3
| |
| 3 | 1, 1, 2, 2 | addgt0ii 8564 |
. 2
|
| 4 | df-2 9095 |
. 2
| |
| 5 | 3, 4 | breqtrri 4071 |
1
|
| Colors of variables: wff set class |
| Syntax hints: class class
class wbr 4044 (class class class)co 5944
|
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-xp 4681 df-iota 5232 df-fv 5279 df-ov 5947 df-pnf 8109 df-mnf 8110 df-ltxr 8112 df-2 9095 |
| This theorem is referenced by: 2ne0 9128 2ap0 9129 3pos 9130 halfgt0 9252 halflt1 9254 halfpos2 9267 halfnneg2 9269 nominpos 9275 avglt1 9276 avglt2 9277 nn0n0n1ge2b 9452 3halfnz 9470 2rp 9780 xleaddadd 10009 2tnp1ge0ge0 10444 mulp1mod1 10510 amgm2 11429 cos2bnd 12071 sin02gt0 12075 sincos2sgn 12077 sin4lt0 12078 epos 12092 oexpneg 12188 oddge22np1 12192 evennn02n 12193 nn0ehalf 12214 nno 12217 nn0oddm1d2 12220 nnoddm1d2 12221 flodddiv4t2lthalf 12250 sqrt2re 12485 sqrt2irrap 12502 slotsdifdsndx 13057 imasvalstrd 13102 cnfldstr 14320 bl2in 14875 pilem3 15255 pipos 15260 sinhalfpilem 15263 sincosq1lem 15297 sinq12gt0 15302 coseq00topi 15307 coseq0negpitopi 15308 tangtx 15310 sincos4thpi 15312 tan4thpi 15313 sincos6thpi 15314 cosordlem 15321 cos02pilt1 15323 gausslemma2dlem0c 15528 gausslemma2dlem1a 15535 gausslemma2dlem2 15539 gausslemma2dlem3 15540 lgseisenlem1 15547 lgseisenlem2 15548 lgseisenlem3 15549 lgsquadlem1 15554 lgsquadlem2 15555 2lgslem1a1 15563 2lgslem1a2 15564 2lgslem1c 15567 2lgslem3a1 15574 ex-fl 15661 |
| Copyright terms: Public domain | W3C validator |