| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2pos | Unicode version | ||
| Description: The number 2 is positive. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 2pos |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8070 |
. . 3
| |
| 2 | 0lt1 8198 |
. . 3
| |
| 3 | 1, 1, 2, 2 | addgt0ii 8563 |
. 2
|
| 4 | df-2 9094 |
. 2
| |
| 5 | 3, 4 | breqtrri 4070 |
1
|
| Colors of variables: wff set class |
| Syntax hints: class class
class wbr 4043 (class class class)co 5943
|
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-xp 4680 df-iota 5231 df-fv 5278 df-ov 5946 df-pnf 8108 df-mnf 8109 df-ltxr 8111 df-2 9094 |
| This theorem is referenced by: 2ne0 9127 2ap0 9128 3pos 9129 halfgt0 9251 halflt1 9253 halfpos2 9266 halfnneg2 9268 nominpos 9274 avglt1 9275 avglt2 9276 nn0n0n1ge2b 9451 3halfnz 9469 2rp 9779 xleaddadd 10008 2tnp1ge0ge0 10442 mulp1mod1 10508 amgm2 11400 cos2bnd 12042 sin02gt0 12046 sincos2sgn 12048 sin4lt0 12049 epos 12063 oexpneg 12159 oddge22np1 12163 evennn02n 12164 nn0ehalf 12185 nno 12188 nn0oddm1d2 12191 nnoddm1d2 12192 flodddiv4t2lthalf 12221 sqrt2re 12456 sqrt2irrap 12473 slotsdifdsndx 13028 imasvalstrd 13073 cnfldstr 14291 bl2in 14846 pilem3 15226 pipos 15231 sinhalfpilem 15234 sincosq1lem 15268 sinq12gt0 15273 coseq00topi 15278 coseq0negpitopi 15279 tangtx 15281 sincos4thpi 15283 tan4thpi 15284 sincos6thpi 15285 cosordlem 15292 cos02pilt1 15294 gausslemma2dlem0c 15499 gausslemma2dlem1a 15506 gausslemma2dlem2 15510 gausslemma2dlem3 15511 lgseisenlem1 15518 lgseisenlem2 15519 lgseisenlem3 15520 lgsquadlem1 15525 lgsquadlem2 15526 2lgslem1a1 15534 2lgslem1a2 15535 2lgslem1c 15538 2lgslem3a1 15545 ex-fl 15623 |
| Copyright terms: Public domain | W3C validator |