| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2pos | Unicode version | ||
| Description: The number 2 is positive. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 2pos |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8027 |
. . 3
| |
| 2 | 0lt1 8155 |
. . 3
| |
| 3 | 1, 1, 2, 2 | addgt0ii 8520 |
. 2
|
| 4 | df-2 9051 |
. 2
| |
| 5 | 3, 4 | breqtrri 4061 |
1
|
| Colors of variables: wff set class |
| Syntax hints: class class
class wbr 4034 (class class class)co 5923
|
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-addcom 7981 ax-addass 7983 ax-i2m1 7986 ax-0lt1 7987 ax-0id 7989 ax-rnegex 7990 ax-pre-lttrn 7995 ax-pre-ltadd 7997 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-iota 5220 df-fv 5267 df-ov 5926 df-pnf 8065 df-mnf 8066 df-ltxr 8068 df-2 9051 |
| This theorem is referenced by: 2ne0 9084 2ap0 9085 3pos 9086 halfgt0 9208 halflt1 9210 halfpos2 9223 halfnneg2 9225 nominpos 9231 avglt1 9232 avglt2 9233 nn0n0n1ge2b 9407 3halfnz 9425 2rp 9735 xleaddadd 9964 2tnp1ge0ge0 10393 mulp1mod1 10459 amgm2 11285 cos2bnd 11927 sin02gt0 11931 sincos2sgn 11933 sin4lt0 11934 epos 11948 oexpneg 12044 oddge22np1 12048 evennn02n 12049 nn0ehalf 12070 nno 12073 nn0oddm1d2 12076 nnoddm1d2 12077 flodddiv4t2lthalf 12106 sqrt2re 12341 sqrt2irrap 12358 slotsdifdsndx 12908 cnfldstr 14124 bl2in 14649 pilem3 15029 pipos 15034 sinhalfpilem 15037 sincosq1lem 15071 sinq12gt0 15076 coseq00topi 15081 coseq0negpitopi 15082 tangtx 15084 sincos4thpi 15086 tan4thpi 15087 sincos6thpi 15088 cosordlem 15095 cos02pilt1 15097 gausslemma2dlem0c 15302 gausslemma2dlem1a 15309 gausslemma2dlem2 15313 gausslemma2dlem3 15314 lgseisenlem1 15321 lgseisenlem2 15322 lgseisenlem3 15323 lgsquadlem1 15328 lgsquadlem2 15329 2lgslem1a1 15337 2lgslem1a2 15338 2lgslem1c 15341 2lgslem3a1 15348 ex-fl 15381 |
| Copyright terms: Public domain | W3C validator |