| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2pos | Unicode version | ||
| Description: The number 2 is positive. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 2pos |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8042 |
. . 3
| |
| 2 | 0lt1 8170 |
. . 3
| |
| 3 | 1, 1, 2, 2 | addgt0ii 8535 |
. 2
|
| 4 | df-2 9066 |
. 2
| |
| 5 | 3, 4 | breqtrri 4061 |
1
|
| Colors of variables: wff set class |
| Syntax hints: class class
class wbr 4034 (class class class)co 5925
|
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-iota 5220 df-fv 5267 df-ov 5928 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-2 9066 |
| This theorem is referenced by: 2ne0 9099 2ap0 9100 3pos 9101 halfgt0 9223 halflt1 9225 halfpos2 9238 halfnneg2 9240 nominpos 9246 avglt1 9247 avglt2 9248 nn0n0n1ge2b 9422 3halfnz 9440 2rp 9750 xleaddadd 9979 2tnp1ge0ge0 10408 mulp1mod1 10474 amgm2 11300 cos2bnd 11942 sin02gt0 11946 sincos2sgn 11948 sin4lt0 11949 epos 11963 oexpneg 12059 oddge22np1 12063 evennn02n 12064 nn0ehalf 12085 nno 12088 nn0oddm1d2 12091 nnoddm1d2 12092 flodddiv4t2lthalf 12121 sqrt2re 12356 sqrt2irrap 12373 slotsdifdsndx 12927 imasvalstrd 12972 cnfldstr 14190 bl2in 14723 pilem3 15103 pipos 15108 sinhalfpilem 15111 sincosq1lem 15145 sinq12gt0 15150 coseq00topi 15155 coseq0negpitopi 15156 tangtx 15158 sincos4thpi 15160 tan4thpi 15161 sincos6thpi 15162 cosordlem 15169 cos02pilt1 15171 gausslemma2dlem0c 15376 gausslemma2dlem1a 15383 gausslemma2dlem2 15387 gausslemma2dlem3 15388 lgseisenlem1 15395 lgseisenlem2 15396 lgseisenlem3 15397 lgsquadlem1 15402 lgsquadlem2 15403 2lgslem1a1 15411 2lgslem1a2 15412 2lgslem1c 15415 2lgslem3a1 15422 ex-fl 15455 |
| Copyright terms: Public domain | W3C validator |