![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addasspig | GIF version |
Description: Addition of positive integers is associative. (Contributed by Jim Kingdon, 26-Aug-2019.) |
Ref | Expression |
---|---|
addasspig | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 +N 𝐵) +N 𝐶) = (𝐴 +N (𝐵 +N 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pinn 7307 | . . 3 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
2 | pinn 7307 | . . 3 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
3 | pinn 7307 | . . 3 ⊢ (𝐶 ∈ N → 𝐶 ∈ ω) | |
4 | nnaass 6485 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶))) | |
5 | 1, 2, 3, 4 | syl3an 1280 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶))) |
6 | addclpi 7325 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) ∈ N) | |
7 | addpiord 7314 | . . . . 5 ⊢ (((𝐴 +N 𝐵) ∈ N ∧ 𝐶 ∈ N) → ((𝐴 +N 𝐵) +N 𝐶) = ((𝐴 +N 𝐵) +o 𝐶)) | |
8 | 6, 7 | sylan 283 | . . . 4 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → ((𝐴 +N 𝐵) +N 𝐶) = ((𝐴 +N 𝐵) +o 𝐶)) |
9 | addpiord 7314 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵)) | |
10 | 9 | oveq1d 5889 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ((𝐴 +N 𝐵) +o 𝐶) = ((𝐴 +o 𝐵) +o 𝐶)) |
11 | 10 | adantr 276 | . . . 4 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → ((𝐴 +N 𝐵) +o 𝐶) = ((𝐴 +o 𝐵) +o 𝐶)) |
12 | 8, 11 | eqtrd 2210 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → ((𝐴 +N 𝐵) +N 𝐶) = ((𝐴 +o 𝐵) +o 𝐶)) |
13 | 12 | 3impa 1194 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 +N 𝐵) +N 𝐶) = ((𝐴 +o 𝐵) +o 𝐶)) |
14 | addclpi 7325 | . . . . 5 ⊢ ((𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐵 +N 𝐶) ∈ N) | |
15 | addpiord 7314 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ (𝐵 +N 𝐶) ∈ N) → (𝐴 +N (𝐵 +N 𝐶)) = (𝐴 +o (𝐵 +N 𝐶))) | |
16 | 14, 15 | sylan2 286 | . . . 4 ⊢ ((𝐴 ∈ N ∧ (𝐵 ∈ N ∧ 𝐶 ∈ N)) → (𝐴 +N (𝐵 +N 𝐶)) = (𝐴 +o (𝐵 +N 𝐶))) |
17 | addpiord 7314 | . . . . . 6 ⊢ ((𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐵 +N 𝐶) = (𝐵 +o 𝐶)) | |
18 | 17 | oveq2d 5890 | . . . . 5 ⊢ ((𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐴 +o (𝐵 +N 𝐶)) = (𝐴 +o (𝐵 +o 𝐶))) |
19 | 18 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ N ∧ (𝐵 ∈ N ∧ 𝐶 ∈ N)) → (𝐴 +o (𝐵 +N 𝐶)) = (𝐴 +o (𝐵 +o 𝐶))) |
20 | 16, 19 | eqtrd 2210 | . . 3 ⊢ ((𝐴 ∈ N ∧ (𝐵 ∈ N ∧ 𝐶 ∈ N)) → (𝐴 +N (𝐵 +N 𝐶)) = (𝐴 +o (𝐵 +o 𝐶))) |
21 | 20 | 3impb 1199 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐴 +N (𝐵 +N 𝐶)) = (𝐴 +o (𝐵 +o 𝐶))) |
22 | 5, 13, 21 | 3eqtr4d 2220 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 +N 𝐵) +N 𝐶) = (𝐴 +N (𝐵 +N 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 ωcom 4589 (class class class)co 5874 +o coa 6413 Ncnpi 7270 +N cpli 7271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4118 ax-sep 4121 ax-nul 4129 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 ax-iinf 4587 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-iun 3888 df-br 4004 df-opab 4065 df-mpt 4066 df-tr 4102 df-id 4293 df-iord 4366 df-on 4368 df-suc 4371 df-iom 4590 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-iota 5178 df-fun 5218 df-fn 5219 df-f 5220 df-f1 5221 df-fo 5222 df-f1o 5223 df-fv 5224 df-ov 5877 df-oprab 5878 df-mpo 5879 df-1st 6140 df-2nd 6141 df-recs 6305 df-irdg 6370 df-oadd 6420 df-ni 7302 df-pli 7303 |
This theorem is referenced by: addassnqg 7380 |
Copyright terms: Public domain | W3C validator |