| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addasspig | GIF version | ||
| Description: Addition of positive integers is associative. (Contributed by Jim Kingdon, 26-Aug-2019.) |
| Ref | Expression |
|---|---|
| addasspig | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 +N 𝐵) +N 𝐶) = (𝐴 +N (𝐵 +N 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pinn 7429 | . . 3 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
| 2 | pinn 7429 | . . 3 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
| 3 | pinn 7429 | . . 3 ⊢ (𝐶 ∈ N → 𝐶 ∈ ω) | |
| 4 | nnaass 6578 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶))) | |
| 5 | 1, 2, 3, 4 | syl3an 1292 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶))) |
| 6 | addclpi 7447 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) ∈ N) | |
| 7 | addpiord 7436 | . . . . 5 ⊢ (((𝐴 +N 𝐵) ∈ N ∧ 𝐶 ∈ N) → ((𝐴 +N 𝐵) +N 𝐶) = ((𝐴 +N 𝐵) +o 𝐶)) | |
| 8 | 6, 7 | sylan 283 | . . . 4 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → ((𝐴 +N 𝐵) +N 𝐶) = ((𝐴 +N 𝐵) +o 𝐶)) |
| 9 | addpiord 7436 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵)) | |
| 10 | 9 | oveq1d 5966 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ((𝐴 +N 𝐵) +o 𝐶) = ((𝐴 +o 𝐵) +o 𝐶)) |
| 11 | 10 | adantr 276 | . . . 4 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → ((𝐴 +N 𝐵) +o 𝐶) = ((𝐴 +o 𝐵) +o 𝐶)) |
| 12 | 8, 11 | eqtrd 2239 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → ((𝐴 +N 𝐵) +N 𝐶) = ((𝐴 +o 𝐵) +o 𝐶)) |
| 13 | 12 | 3impa 1197 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 +N 𝐵) +N 𝐶) = ((𝐴 +o 𝐵) +o 𝐶)) |
| 14 | addclpi 7447 | . . . . 5 ⊢ ((𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐵 +N 𝐶) ∈ N) | |
| 15 | addpiord 7436 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ (𝐵 +N 𝐶) ∈ N) → (𝐴 +N (𝐵 +N 𝐶)) = (𝐴 +o (𝐵 +N 𝐶))) | |
| 16 | 14, 15 | sylan2 286 | . . . 4 ⊢ ((𝐴 ∈ N ∧ (𝐵 ∈ N ∧ 𝐶 ∈ N)) → (𝐴 +N (𝐵 +N 𝐶)) = (𝐴 +o (𝐵 +N 𝐶))) |
| 17 | addpiord 7436 | . . . . . 6 ⊢ ((𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐵 +N 𝐶) = (𝐵 +o 𝐶)) | |
| 18 | 17 | oveq2d 5967 | . . . . 5 ⊢ ((𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐴 +o (𝐵 +N 𝐶)) = (𝐴 +o (𝐵 +o 𝐶))) |
| 19 | 18 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ N ∧ (𝐵 ∈ N ∧ 𝐶 ∈ N)) → (𝐴 +o (𝐵 +N 𝐶)) = (𝐴 +o (𝐵 +o 𝐶))) |
| 20 | 16, 19 | eqtrd 2239 | . . 3 ⊢ ((𝐴 ∈ N ∧ (𝐵 ∈ N ∧ 𝐶 ∈ N)) → (𝐴 +N (𝐵 +N 𝐶)) = (𝐴 +o (𝐵 +o 𝐶))) |
| 21 | 20 | 3impb 1202 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐴 +N (𝐵 +N 𝐶)) = (𝐴 +o (𝐵 +o 𝐶))) |
| 22 | 5, 13, 21 | 3eqtr4d 2249 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 +N 𝐵) +N 𝐶) = (𝐴 +N (𝐵 +N 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ωcom 4642 (class class class)co 5951 +o coa 6506 Ncnpi 7392 +N cpli 7393 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-iord 4417 df-on 4419 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-irdg 6463 df-oadd 6513 df-ni 7424 df-pli 7425 |
| This theorem is referenced by: addassnqg 7502 |
| Copyright terms: Public domain | W3C validator |