ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnaass Unicode version

Theorem nnaass 6389
Description: Addition of natural numbers is associative. Theorem 4K(1) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaass  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  +o  B
)  +o  C )  =  ( A  +o  ( B  +o  C
) ) )

Proof of Theorem nnaass
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5790 . . . . . 6  |-  ( x  =  C  ->  (
( A  +o  B
)  +o  x )  =  ( ( A  +o  B )  +o  C ) )
2 oveq2 5790 . . . . . . 7  |-  ( x  =  C  ->  ( B  +o  x )  =  ( B  +o  C
) )
32oveq2d 5798 . . . . . 6  |-  ( x  =  C  ->  ( A  +o  ( B  +o  x ) )  =  ( A  +o  ( B  +o  C ) ) )
41, 3eqeq12d 2155 . . . . 5  |-  ( x  =  C  ->  (
( ( A  +o  B )  +o  x
)  =  ( A  +o  ( B  +o  x ) )  <->  ( ( A  +o  B )  +o  C )  =  ( A  +o  ( B  +o  C ) ) ) )
54imbi2d 229 . . . 4  |-  ( x  =  C  ->  (
( ( A  e. 
om  /\  B  e.  om )  ->  ( ( A  +o  B )  +o  x )  =  ( A  +o  ( B  +o  x ) ) )  <->  ( ( A  e.  om  /\  B  e.  om )  ->  (
( A  +o  B
)  +o  C )  =  ( A  +o  ( B  +o  C
) ) ) ) )
6 oveq2 5790 . . . . . 6  |-  ( x  =  (/)  ->  ( ( A  +o  B )  +o  x )  =  ( ( A  +o  B )  +o  (/) ) )
7 oveq2 5790 . . . . . . 7  |-  ( x  =  (/)  ->  ( B  +o  x )  =  ( B  +o  (/) ) )
87oveq2d 5798 . . . . . 6  |-  ( x  =  (/)  ->  ( A  +o  ( B  +o  x ) )  =  ( A  +o  ( B  +o  (/) ) ) )
96, 8eqeq12d 2155 . . . . 5  |-  ( x  =  (/)  ->  ( ( ( A  +o  B
)  +o  x )  =  ( A  +o  ( B  +o  x
) )  <->  ( ( A  +o  B )  +o  (/) )  =  ( A  +o  ( B  +o  (/) ) ) ) )
10 oveq2 5790 . . . . . 6  |-  ( x  =  y  ->  (
( A  +o  B
)  +o  x )  =  ( ( A  +o  B )  +o  y ) )
11 oveq2 5790 . . . . . . 7  |-  ( x  =  y  ->  ( B  +o  x )  =  ( B  +o  y
) )
1211oveq2d 5798 . . . . . 6  |-  ( x  =  y  ->  ( A  +o  ( B  +o  x ) )  =  ( A  +o  ( B  +o  y ) ) )
1310, 12eqeq12d 2155 . . . . 5  |-  ( x  =  y  ->  (
( ( A  +o  B )  +o  x
)  =  ( A  +o  ( B  +o  x ) )  <->  ( ( A  +o  B )  +o  y )  =  ( A  +o  ( B  +o  y ) ) ) )
14 oveq2 5790 . . . . . 6  |-  ( x  =  suc  y  -> 
( ( A  +o  B )  +o  x
)  =  ( ( A  +o  B )  +o  suc  y ) )
15 oveq2 5790 . . . . . . 7  |-  ( x  =  suc  y  -> 
( B  +o  x
)  =  ( B  +o  suc  y ) )
1615oveq2d 5798 . . . . . 6  |-  ( x  =  suc  y  -> 
( A  +o  ( B  +o  x ) )  =  ( A  +o  ( B  +o  suc  y
) ) )
1714, 16eqeq12d 2155 . . . . 5  |-  ( x  =  suc  y  -> 
( ( ( A  +o  B )  +o  x )  =  ( A  +o  ( B  +o  x ) )  <-> 
( ( A  +o  B )  +o  suc  y )  =  ( A  +o  ( B  +o  suc  y ) ) ) )
18 nnacl 6384 . . . . . . 7  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  +o  B
)  e.  om )
19 nna0 6378 . . . . . . 7  |-  ( ( A  +o  B )  e.  om  ->  (
( A  +o  B
)  +o  (/) )  =  ( A  +o  B
) )
2018, 19syl 14 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  +o  B )  +o  (/) )  =  ( A  +o  B
) )
21 nna0 6378 . . . . . . . 8  |-  ( B  e.  om  ->  ( B  +o  (/) )  =  B )
2221oveq2d 5798 . . . . . . 7  |-  ( B  e.  om  ->  ( A  +o  ( B  +o  (/) ) )  =  ( A  +o  B ) )
2322adantl 275 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  +o  ( B  +o  (/) ) )  =  ( A  +o  B
) )
2420, 23eqtr4d 2176 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  +o  B )  +o  (/) )  =  ( A  +o  ( B  +o  (/) ) ) )
25 suceq 4332 . . . . . . 7  |-  ( ( ( A  +o  B
)  +o  y )  =  ( A  +o  ( B  +o  y
) )  ->  suc  ( ( A  +o  B )  +o  y
)  =  suc  ( A  +o  ( B  +o  y ) ) )
26 nnasuc 6380 . . . . . . . . 9  |-  ( ( ( A  +o  B
)  e.  om  /\  y  e.  om )  ->  ( ( A  +o  B )  +o  suc  y )  =  suc  ( ( A  +o  B )  +o  y
) )
2718, 26sylan 281 . . . . . . . 8  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  y  e.  om )  ->  ( ( A  +o  B )  +o 
suc  y )  =  suc  ( ( A  +o  B )  +o  y ) )
28 nnasuc 6380 . . . . . . . . . . . 12  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  +o  suc  y )  =  suc  ( B  +o  y
) )
2928oveq2d 5798 . . . . . . . . . . 11  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( A  +o  ( B  +o  suc  y ) )  =  ( A  +o  suc  ( B  +o  y ) ) )
3029adantl 275 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  ( B  e.  om  /\  y  e.  om )
)  ->  ( A  +o  ( B  +o  suc  y ) )  =  ( A  +o  suc  ( B  +o  y
) ) )
31 nnacl 6384 . . . . . . . . . . 11  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  +o  y
)  e.  om )
32 nnasuc 6380 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  ( B  +o  y
)  e.  om )  ->  ( A  +o  suc  ( B  +o  y
) )  =  suc  ( A  +o  ( B  +o  y ) ) )
3331, 32sylan2 284 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  ( B  e.  om  /\  y  e.  om )
)  ->  ( A  +o  suc  ( B  +o  y ) )  =  suc  ( A  +o  ( B  +o  y
) ) )
3430, 33eqtrd 2173 . . . . . . . . 9  |-  ( ( A  e.  om  /\  ( B  e.  om  /\  y  e.  om )
)  ->  ( A  +o  ( B  +o  suc  y ) )  =  suc  ( A  +o  ( B  +o  y
) ) )
3534anassrs 398 . . . . . . . 8  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  y  e.  om )  ->  ( A  +o  ( B  +o  suc  y
) )  =  suc  ( A  +o  ( B  +o  y ) ) )
3627, 35eqeq12d 2155 . . . . . . 7  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  y  e.  om )  ->  ( ( ( A  +o  B )  +o  suc  y )  =  ( A  +o  ( B  +o  suc  y
) )  <->  suc  ( ( A  +o  B )  +o  y )  =  suc  ( A  +o  ( B  +o  y
) ) ) )
3725, 36syl5ibr 155 . . . . . 6  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  y  e.  om )  ->  ( ( ( A  +o  B )  +o  y )  =  ( A  +o  ( B  +o  y ) )  ->  ( ( A  +o  B )  +o 
suc  y )  =  ( A  +o  ( B  +o  suc  y ) ) ) )
3837expcom 115 . . . . 5  |-  ( y  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( ( ( A  +o  B )  +o  y )  =  ( A  +o  ( B  +o  y ) )  ->  ( ( A  +o  B )  +o 
suc  y )  =  ( A  +o  ( B  +o  suc  y ) ) ) ) )
399, 13, 17, 24, 38finds2 4523 . . . 4  |-  ( x  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( ( A  +o  B )  +o  x
)  =  ( A  +o  ( B  +o  x ) ) ) )
405, 39vtoclga 2755 . . 3  |-  ( C  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( ( A  +o  B )  +o  C
)  =  ( A  +o  ( B  +o  C ) ) ) )
4140com12 30 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( C  e.  om  ->  ( ( A  +o  B )  +o  C
)  =  ( A  +o  ( B  +o  C ) ) ) )
42413impia 1179 1  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  +o  B
)  +o  C )  =  ( A  +o  ( B  +o  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 963    = wceq 1332    e. wcel 1481   (/)c0 3368   suc csuc 4295   omcom 4512  (class class class)co 5782    +o coa 6318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-oadd 6325
This theorem is referenced by:  nndi  6390  nnmsucr  6392  addasspig  7162  addassnq0  7294  prarloclemlo  7326
  Copyright terms: Public domain W3C validator