Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnaass | Unicode version |
Description: Addition of natural numbers is associative. Theorem 4K(1) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
nnaass |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5873 | . . . . . 6 | |
2 | oveq2 5873 | . . . . . . 7 | |
3 | 2 | oveq2d 5881 | . . . . . 6 |
4 | 1, 3 | eqeq12d 2190 | . . . . 5 |
5 | 4 | imbi2d 230 | . . . 4 |
6 | oveq2 5873 | . . . . . 6 | |
7 | oveq2 5873 | . . . . . . 7 | |
8 | 7 | oveq2d 5881 | . . . . . 6 |
9 | 6, 8 | eqeq12d 2190 | . . . . 5 |
10 | oveq2 5873 | . . . . . 6 | |
11 | oveq2 5873 | . . . . . . 7 | |
12 | 11 | oveq2d 5881 | . . . . . 6 |
13 | 10, 12 | eqeq12d 2190 | . . . . 5 |
14 | oveq2 5873 | . . . . . 6 | |
15 | oveq2 5873 | . . . . . . 7 | |
16 | 15 | oveq2d 5881 | . . . . . 6 |
17 | 14, 16 | eqeq12d 2190 | . . . . 5 |
18 | nnacl 6471 | . . . . . . 7 | |
19 | nna0 6465 | . . . . . . 7 | |
20 | 18, 19 | syl 14 | . . . . . 6 |
21 | nna0 6465 | . . . . . . . 8 | |
22 | 21 | oveq2d 5881 | . . . . . . 7 |
23 | 22 | adantl 277 | . . . . . 6 |
24 | 20, 23 | eqtr4d 2211 | . . . . 5 |
25 | suceq 4396 | . . . . . . 7 | |
26 | nnasuc 6467 | . . . . . . . . 9 | |
27 | 18, 26 | sylan 283 | . . . . . . . 8 |
28 | nnasuc 6467 | . . . . . . . . . . . 12 | |
29 | 28 | oveq2d 5881 | . . . . . . . . . . 11 |
30 | 29 | adantl 277 | . . . . . . . . . 10 |
31 | nnacl 6471 | . . . . . . . . . . 11 | |
32 | nnasuc 6467 | . . . . . . . . . . 11 | |
33 | 31, 32 | sylan2 286 | . . . . . . . . . 10 |
34 | 30, 33 | eqtrd 2208 | . . . . . . . . 9 |
35 | 34 | anassrs 400 | . . . . . . . 8 |
36 | 27, 35 | eqeq12d 2190 | . . . . . . 7 |
37 | 25, 36 | syl5ibr 156 | . . . . . 6 |
38 | 37 | expcom 116 | . . . . 5 |
39 | 9, 13, 17, 24, 38 | finds2 4594 | . . . 4 |
40 | 5, 39 | vtoclga 2801 | . . 3 |
41 | 40 | com12 30 | . 2 |
42 | 41 | 3impia 1200 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 w3a 978 wceq 1353 wcel 2146 c0 3420 csuc 4359 com 4583 (class class class)co 5865 coa 6404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-iord 4360 df-on 4362 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-irdg 6361 df-oadd 6411 |
This theorem is referenced by: nndi 6477 nnmsucr 6479 addasspig 7304 addassnq0 7436 prarloclemlo 7468 |
Copyright terms: Public domain | W3C validator |