ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnaass Unicode version

Theorem nnaass 6476
Description: Addition of natural numbers is associative. Theorem 4K(1) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaass  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  +o  B
)  +o  C )  =  ( A  +o  ( B  +o  C
) ) )

Proof of Theorem nnaass
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5873 . . . . . 6  |-  ( x  =  C  ->  (
( A  +o  B
)  +o  x )  =  ( ( A  +o  B )  +o  C ) )
2 oveq2 5873 . . . . . . 7  |-  ( x  =  C  ->  ( B  +o  x )  =  ( B  +o  C
) )
32oveq2d 5881 . . . . . 6  |-  ( x  =  C  ->  ( A  +o  ( B  +o  x ) )  =  ( A  +o  ( B  +o  C ) ) )
41, 3eqeq12d 2190 . . . . 5  |-  ( x  =  C  ->  (
( ( A  +o  B )  +o  x
)  =  ( A  +o  ( B  +o  x ) )  <->  ( ( A  +o  B )  +o  C )  =  ( A  +o  ( B  +o  C ) ) ) )
54imbi2d 230 . . . 4  |-  ( x  =  C  ->  (
( ( A  e. 
om  /\  B  e.  om )  ->  ( ( A  +o  B )  +o  x )  =  ( A  +o  ( B  +o  x ) ) )  <->  ( ( A  e.  om  /\  B  e.  om )  ->  (
( A  +o  B
)  +o  C )  =  ( A  +o  ( B  +o  C
) ) ) ) )
6 oveq2 5873 . . . . . 6  |-  ( x  =  (/)  ->  ( ( A  +o  B )  +o  x )  =  ( ( A  +o  B )  +o  (/) ) )
7 oveq2 5873 . . . . . . 7  |-  ( x  =  (/)  ->  ( B  +o  x )  =  ( B  +o  (/) ) )
87oveq2d 5881 . . . . . 6  |-  ( x  =  (/)  ->  ( A  +o  ( B  +o  x ) )  =  ( A  +o  ( B  +o  (/) ) ) )
96, 8eqeq12d 2190 . . . . 5  |-  ( x  =  (/)  ->  ( ( ( A  +o  B
)  +o  x )  =  ( A  +o  ( B  +o  x
) )  <->  ( ( A  +o  B )  +o  (/) )  =  ( A  +o  ( B  +o  (/) ) ) ) )
10 oveq2 5873 . . . . . 6  |-  ( x  =  y  ->  (
( A  +o  B
)  +o  x )  =  ( ( A  +o  B )  +o  y ) )
11 oveq2 5873 . . . . . . 7  |-  ( x  =  y  ->  ( B  +o  x )  =  ( B  +o  y
) )
1211oveq2d 5881 . . . . . 6  |-  ( x  =  y  ->  ( A  +o  ( B  +o  x ) )  =  ( A  +o  ( B  +o  y ) ) )
1310, 12eqeq12d 2190 . . . . 5  |-  ( x  =  y  ->  (
( ( A  +o  B )  +o  x
)  =  ( A  +o  ( B  +o  x ) )  <->  ( ( A  +o  B )  +o  y )  =  ( A  +o  ( B  +o  y ) ) ) )
14 oveq2 5873 . . . . . 6  |-  ( x  =  suc  y  -> 
( ( A  +o  B )  +o  x
)  =  ( ( A  +o  B )  +o  suc  y ) )
15 oveq2 5873 . . . . . . 7  |-  ( x  =  suc  y  -> 
( B  +o  x
)  =  ( B  +o  suc  y ) )
1615oveq2d 5881 . . . . . 6  |-  ( x  =  suc  y  -> 
( A  +o  ( B  +o  x ) )  =  ( A  +o  ( B  +o  suc  y
) ) )
1714, 16eqeq12d 2190 . . . . 5  |-  ( x  =  suc  y  -> 
( ( ( A  +o  B )  +o  x )  =  ( A  +o  ( B  +o  x ) )  <-> 
( ( A  +o  B )  +o  suc  y )  =  ( A  +o  ( B  +o  suc  y ) ) ) )
18 nnacl 6471 . . . . . . 7  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  +o  B
)  e.  om )
19 nna0 6465 . . . . . . 7  |-  ( ( A  +o  B )  e.  om  ->  (
( A  +o  B
)  +o  (/) )  =  ( A  +o  B
) )
2018, 19syl 14 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  +o  B )  +o  (/) )  =  ( A  +o  B
) )
21 nna0 6465 . . . . . . . 8  |-  ( B  e.  om  ->  ( B  +o  (/) )  =  B )
2221oveq2d 5881 . . . . . . 7  |-  ( B  e.  om  ->  ( A  +o  ( B  +o  (/) ) )  =  ( A  +o  B ) )
2322adantl 277 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  +o  ( B  +o  (/) ) )  =  ( A  +o  B
) )
2420, 23eqtr4d 2211 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  +o  B )  +o  (/) )  =  ( A  +o  ( B  +o  (/) ) ) )
25 suceq 4396 . . . . . . 7  |-  ( ( ( A  +o  B
)  +o  y )  =  ( A  +o  ( B  +o  y
) )  ->  suc  ( ( A  +o  B )  +o  y
)  =  suc  ( A  +o  ( B  +o  y ) ) )
26 nnasuc 6467 . . . . . . . . 9  |-  ( ( ( A  +o  B
)  e.  om  /\  y  e.  om )  ->  ( ( A  +o  B )  +o  suc  y )  =  suc  ( ( A  +o  B )  +o  y
) )
2718, 26sylan 283 . . . . . . . 8  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  y  e.  om )  ->  ( ( A  +o  B )  +o 
suc  y )  =  suc  ( ( A  +o  B )  +o  y ) )
28 nnasuc 6467 . . . . . . . . . . . 12  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  +o  suc  y )  =  suc  ( B  +o  y
) )
2928oveq2d 5881 . . . . . . . . . . 11  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( A  +o  ( B  +o  suc  y ) )  =  ( A  +o  suc  ( B  +o  y ) ) )
3029adantl 277 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  ( B  e.  om  /\  y  e.  om )
)  ->  ( A  +o  ( B  +o  suc  y ) )  =  ( A  +o  suc  ( B  +o  y
) ) )
31 nnacl 6471 . . . . . . . . . . 11  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  +o  y
)  e.  om )
32 nnasuc 6467 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  ( B  +o  y
)  e.  om )  ->  ( A  +o  suc  ( B  +o  y
) )  =  suc  ( A  +o  ( B  +o  y ) ) )
3331, 32sylan2 286 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  ( B  e.  om  /\  y  e.  om )
)  ->  ( A  +o  suc  ( B  +o  y ) )  =  suc  ( A  +o  ( B  +o  y
) ) )
3430, 33eqtrd 2208 . . . . . . . . 9  |-  ( ( A  e.  om  /\  ( B  e.  om  /\  y  e.  om )
)  ->  ( A  +o  ( B  +o  suc  y ) )  =  suc  ( A  +o  ( B  +o  y
) ) )
3534anassrs 400 . . . . . . . 8  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  y  e.  om )  ->  ( A  +o  ( B  +o  suc  y
) )  =  suc  ( A  +o  ( B  +o  y ) ) )
3627, 35eqeq12d 2190 . . . . . . 7  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  y  e.  om )  ->  ( ( ( A  +o  B )  +o  suc  y )  =  ( A  +o  ( B  +o  suc  y
) )  <->  suc  ( ( A  +o  B )  +o  y )  =  suc  ( A  +o  ( B  +o  y
) ) ) )
3725, 36syl5ibr 156 . . . . . 6  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  y  e.  om )  ->  ( ( ( A  +o  B )  +o  y )  =  ( A  +o  ( B  +o  y ) )  ->  ( ( A  +o  B )  +o 
suc  y )  =  ( A  +o  ( B  +o  suc  y ) ) ) )
3837expcom 116 . . . . 5  |-  ( y  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( ( ( A  +o  B )  +o  y )  =  ( A  +o  ( B  +o  y ) )  ->  ( ( A  +o  B )  +o 
suc  y )  =  ( A  +o  ( B  +o  suc  y ) ) ) ) )
399, 13, 17, 24, 38finds2 4594 . . . 4  |-  ( x  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( ( A  +o  B )  +o  x
)  =  ( A  +o  ( B  +o  x ) ) ) )
405, 39vtoclga 2801 . . 3  |-  ( C  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( ( A  +o  B )  +o  C
)  =  ( A  +o  ( B  +o  C ) ) ) )
4140com12 30 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( C  e.  om  ->  ( ( A  +o  B )  +o  C
)  =  ( A  +o  ( B  +o  C ) ) ) )
42413impia 1200 1  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  +o  B
)  +o  C )  =  ( A  +o  ( B  +o  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2146   (/)c0 3420   suc csuc 4359   omcom 4583  (class class class)co 5865    +o coa 6404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-iord 4360  df-on 4362  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-irdg 6361  df-oadd 6411
This theorem is referenced by:  nndi  6477  nnmsucr  6479  addasspig  7304  addassnq0  7436  prarloclemlo  7468
  Copyright terms: Public domain W3C validator