ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addge01d Unicode version

Theorem addge01d 8626
Description: A number is less than or equal to itself plus a nonnegative number. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
leidd.1  |-  ( ph  ->  A  e.  RR )
ltnegd.2  |-  ( ph  ->  B  e.  RR )
Assertion
Ref Expression
addge01d  |-  ( ph  ->  ( 0  <_  B  <->  A  <_  ( A  +  B ) ) )

Proof of Theorem addge01d
StepHypRef Expression
1 leidd.1 . 2  |-  ( ph  ->  A  e.  RR )
2 ltnegd.2 . 2  |-  ( ph  ->  B  e.  RR )
3 addge01 8565 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <_  B  <->  A  <_  ( A  +  B ) ) )
41, 2, 3syl2anc 411 1  |-  ( ph  ->  ( 0  <_  B  <->  A  <_  ( A  +  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2177   class class class wbr 4051  (class class class)co 5957   RRcr 7944   0cc0 7945    + caddc 7948    <_ cle 8128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-i2m1 8050  ax-0id 8053  ax-rnegex 8054  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-xp 4689  df-cnv 4691  df-iota 5241  df-fv 5288  df-ov 5960  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133
This theorem is referenced by:  nn2ge  9089  2tnp1ge0ge0  10466  ser3mono  10654  bernneq  10827  resqrexlemlo  11399  resqrexlemcalc2  11401  absrele  11469  climserle  11731  fsumlessfi  11846  sinbnd  12138  divalglemnqt  12306
  Copyright terms: Public domain W3C validator