| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4pos | Unicode version | ||
| Description: The number 4 is positive. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 4pos |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3re 9184 |
. . 3
| |
| 2 | 1re 8145 |
. . 3
| |
| 3 | 3pos 9204 |
. . 3
| |
| 4 | 0lt1 8273 |
. . 3
| |
| 5 | 1, 2, 3, 4 | addgt0ii 8638 |
. 2
|
| 6 | df-4 9171 |
. 2
| |
| 7 | 5, 6 | breqtrri 4110 |
1
|
| Colors of variables: wff set class |
| Syntax hints: class class
class wbr 4083 (class class class)co 6001
|
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-iota 5278 df-fv 5326 df-ov 6004 df-pnf 8183 df-mnf 8184 df-ltxr 8186 df-2 9169 df-3 9170 df-4 9171 |
| This theorem is referenced by: 4ne0 9208 4ap0 9209 5pos 9210 8th4div3 9330 div4p1lem1div2 9365 fldiv4p1lem1div2 10525 iexpcyc 10866 faclbnd2 10964 resqrexlemover 11521 resqrexlemcalc1 11525 resqrexlemcalc2 11526 resqrexlemcalc3 11527 resqrexlemnm 11529 resqrexlemga 11534 sqrt2gt1lt2 11560 flodddiv4 12447 dveflem 15400 coseq0negpitopi 15510 sincos4thpi 15514 gausslemma2dlem0d 15731 |
| Copyright terms: Public domain | W3C validator |