| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4pos | Unicode version | ||
| Description: The number 4 is positive. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 4pos |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3re 9110 |
. . 3
| |
| 2 | 1re 8071 |
. . 3
| |
| 3 | 3pos 9130 |
. . 3
| |
| 4 | 0lt1 8199 |
. . 3
| |
| 5 | 1, 2, 3, 4 | addgt0ii 8564 |
. 2
|
| 6 | df-4 9097 |
. 2
| |
| 7 | 5, 6 | breqtrri 4071 |
1
|
| Colors of variables: wff set class |
| Syntax hints: class class
class wbr 4044 (class class class)co 5944
|
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-xp 4681 df-iota 5232 df-fv 5279 df-ov 5947 df-pnf 8109 df-mnf 8110 df-ltxr 8112 df-2 9095 df-3 9096 df-4 9097 |
| This theorem is referenced by: 4ne0 9134 4ap0 9135 5pos 9136 8th4div3 9256 div4p1lem1div2 9291 fldiv4p1lem1div2 10448 iexpcyc 10789 faclbnd2 10887 resqrexlemover 11321 resqrexlemcalc1 11325 resqrexlemcalc2 11326 resqrexlemcalc3 11327 resqrexlemnm 11329 resqrexlemga 11334 sqrt2gt1lt2 11360 flodddiv4 12247 dveflem 15198 coseq0negpitopi 15308 sincos4thpi 15312 gausslemma2dlem0d 15529 |
| Copyright terms: Public domain | W3C validator |