Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 4pos | Unicode version |
Description: The number 4 is positive. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
4pos |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3re 8886 | . . 3 | |
2 | 1re 7856 | . . 3 | |
3 | 3pos 8906 | . . 3 | |
4 | 0lt1 7981 | . . 3 | |
5 | 1, 2, 3, 4 | addgt0ii 8345 | . 2 |
6 | df-4 8873 | . 2 | |
7 | 5, 6 | breqtrri 3987 | 1 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 3961 (class class class)co 5814 cc0 7711 c1 7712 caddc 7714 clt 7891 c3 8864 c4 8865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-addcom 7811 ax-addass 7813 ax-i2m1 7816 ax-0lt1 7817 ax-0id 7819 ax-rnegex 7820 ax-pre-lttrn 7825 ax-pre-ltadd 7827 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-rab 2441 df-v 2711 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-xp 4585 df-iota 5128 df-fv 5171 df-ov 5817 df-pnf 7893 df-mnf 7894 df-ltxr 7896 df-2 8871 df-3 8872 df-4 8873 |
This theorem is referenced by: 4ne0 8910 4ap0 8911 5pos 8912 8th4div3 9031 div4p1lem1div2 9065 fldiv4p1lem1div2 10182 iexpcyc 10501 faclbnd2 10593 resqrexlemover 10887 resqrexlemcalc1 10891 resqrexlemcalc2 10892 resqrexlemcalc3 10893 resqrexlemnm 10895 resqrexlemga 10900 sqrt2gt1lt2 10926 flodddiv4 11798 dveflem 13034 coseq0negpitopi 13104 sincos4thpi 13108 |
Copyright terms: Public domain | W3C validator |