| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 4pos | Unicode version | ||
| Description: The number 4 is positive. (Contributed by NM, 27-May-1999.) | 
| Ref | Expression | 
|---|---|
| 4pos | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3re 9064 | 
. . 3
 | |
| 2 | 1re 8025 | 
. . 3
 | |
| 3 | 3pos 9084 | 
. . 3
 | |
| 4 | 0lt1 8153 | 
. . 3
 | |
| 5 | 1, 2, 3, 4 | addgt0ii 8518 | 
. 2
 | 
| 6 | df-4 9051 | 
. 2
 | |
| 7 | 5, 6 | breqtrri 4060 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    class class
class wbr 4033  (class class class)co 5922
  | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-iota 5219 df-fv 5266 df-ov 5925 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-2 9049 df-3 9050 df-4 9051 | 
| This theorem is referenced by: 4ne0 9088 4ap0 9089 5pos 9090 8th4div3 9210 div4p1lem1div2 9245 fldiv4p1lem1div2 10395 iexpcyc 10736 faclbnd2 10834 resqrexlemover 11175 resqrexlemcalc1 11179 resqrexlemcalc2 11180 resqrexlemcalc3 11181 resqrexlemnm 11183 resqrexlemga 11188 sqrt2gt1lt2 11214 flodddiv4 12101 dveflem 14962 coseq0negpitopi 15072 sincos4thpi 15076 gausslemma2dlem0d 15293 | 
| Copyright terms: Public domain | W3C validator |