![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 4pos | Unicode version |
Description: The number 4 is positive. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
4pos |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3re 8701 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1re 7686 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 3pos 8721 |
. . 3
![]() ![]() ![]() ![]() | |
4 | 0lt1 7809 |
. . 3
![]() ![]() ![]() ![]() | |
5 | 1, 2, 3, 4 | addgt0ii 8169 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | df-4 8688 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 5, 6 | breqtrri 3920 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: class class
class wbr 3895 (class class class)co 5728
![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-setind 4412 ax-cnex 7633 ax-resscn 7634 ax-1cn 7635 ax-1re 7636 ax-icn 7637 ax-addcl 7638 ax-addrcl 7639 ax-mulcl 7640 ax-addcom 7642 ax-addass 7644 ax-i2m1 7647 ax-0lt1 7648 ax-0id 7650 ax-rnegex 7651 ax-pre-lttrn 7656 ax-pre-ltadd 7658 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-nel 2378 df-ral 2395 df-rex 2396 df-rab 2399 df-v 2659 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-br 3896 df-opab 3950 df-xp 4505 df-iota 5046 df-fv 5089 df-ov 5731 df-pnf 7723 df-mnf 7724 df-ltxr 7726 df-2 8686 df-3 8687 df-4 8688 |
This theorem is referenced by: 4ne0 8725 4ap0 8726 5pos 8727 8th4div3 8840 div4p1lem1div2 8874 fldiv4p1lem1div2 9968 iexpcyc 10287 faclbnd2 10378 resqrexlemover 10671 resqrexlemcalc1 10675 resqrexlemcalc2 10676 resqrexlemcalc3 10677 resqrexlemnm 10679 resqrexlemga 10684 sqrt2gt1lt2 10710 flodddiv4 11476 |
Copyright terms: Public domain | W3C validator |