| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addgt0ii | GIF version | ||
| Description: Addition of 2 positive numbers is positive. (Contributed by NM, 18-May-1999.) |
| Ref | Expression |
|---|---|
| lt2.1 | ⊢ 𝐴 ∈ ℝ |
| lt2.2 | ⊢ 𝐵 ∈ ℝ |
| addgt0i.3 | ⊢ 0 < 𝐴 |
| addgt0i.4 | ⊢ 0 < 𝐵 |
| Ref | Expression |
|---|---|
| addgt0ii | ⊢ 0 < (𝐴 + 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addgt0i.3 | . 2 ⊢ 0 < 𝐴 | |
| 2 | addgt0i.4 | . 2 ⊢ 0 < 𝐵 | |
| 3 | lt2.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
| 4 | lt2.2 | . . 3 ⊢ 𝐵 ∈ ℝ | |
| 5 | 3, 4 | addgt0i 8576 | . 2 ⊢ ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 + 𝐵)) |
| 6 | 1, 2, 5 | mp2an 426 | 1 ⊢ 0 < (𝐴 + 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 class class class wbr 4050 (class class class)co 5956 ℝcr 7939 0cc0 7940 + caddc 7943 < clt 8122 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-addcom 8040 ax-addass 8042 ax-i2m1 8045 ax-0id 8048 ax-rnegex 8049 ax-pre-lttrn 8054 ax-pre-ltadd 8056 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-br 4051 df-opab 4113 df-xp 4688 df-iota 5240 df-fv 5287 df-ov 5959 df-pnf 8124 df-mnf 8125 df-ltxr 8127 |
| This theorem is referenced by: eqneg 8820 2pos 9142 3pos 9145 4pos 9148 5pos 9151 6pos 9152 7pos 9153 8pos 9154 9pos 9155 |
| Copyright terms: Public domain | W3C validator |