Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addgt0ii | GIF version |
Description: Addition of 2 positive numbers is positive. (Contributed by NM, 18-May-1999.) |
Ref | Expression |
---|---|
lt2.1 | ⊢ 𝐴 ∈ ℝ |
lt2.2 | ⊢ 𝐵 ∈ ℝ |
addgt0i.3 | ⊢ 0 < 𝐴 |
addgt0i.4 | ⊢ 0 < 𝐵 |
Ref | Expression |
---|---|
addgt0ii | ⊢ 0 < (𝐴 + 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addgt0i.3 | . 2 ⊢ 0 < 𝐴 | |
2 | addgt0i.4 | . 2 ⊢ 0 < 𝐵 | |
3 | lt2.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
4 | lt2.2 | . . 3 ⊢ 𝐵 ∈ ℝ | |
5 | 3, 4 | addgt0i 8364 | . 2 ⊢ ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 + 𝐵)) |
6 | 1, 2, 5 | mp2an 423 | 1 ⊢ 0 < (𝐴 + 𝐵) |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2128 class class class wbr 3966 (class class class)co 5825 ℝcr 7732 0cc0 7733 + caddc 7736 < clt 7913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4083 ax-pow 4136 ax-pr 4170 ax-un 4394 ax-setind 4497 ax-cnex 7824 ax-resscn 7825 ax-1cn 7826 ax-1re 7827 ax-icn 7828 ax-addcl 7829 ax-addrcl 7830 ax-mulcl 7831 ax-addcom 7833 ax-addass 7835 ax-i2m1 7838 ax-0id 7841 ax-rnegex 7842 ax-pre-lttrn 7847 ax-pre-ltadd 7849 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3774 df-br 3967 df-opab 4027 df-xp 4593 df-iota 5136 df-fv 5179 df-ov 5828 df-pnf 7915 df-mnf 7916 df-ltxr 7918 |
This theorem is referenced by: eqneg 8606 2pos 8925 3pos 8928 4pos 8931 5pos 8934 6pos 8935 7pos 8936 8pos 8937 9pos 8938 |
Copyright terms: Public domain | W3C validator |