ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omeo Unicode version

Theorem omeo 11906
Description: The difference of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
omeo  |-  ( ( ( A  e.  ZZ  /\ 
-.  2  ||  A
)  /\  ( B  e.  ZZ  /\  2  ||  B ) )  ->  -.  2  ||  ( A  -  B ) )

Proof of Theorem omeo
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odd2np1 11881 . . . . . 6  |-  ( A  e.  ZZ  ->  ( -.  2  ||  A  <->  E. a  e.  ZZ  ( ( 2  x.  a )  +  1 )  =  A ) )
2 2z 9284 . . . . . . 7  |-  2  e.  ZZ
3 divides 11799 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  ||  B  <->  E. b  e.  ZZ  (
b  x.  2 )  =  B ) )
42, 3mpan 424 . . . . . 6  |-  ( B  e.  ZZ  ->  (
2  ||  B  <->  E. b  e.  ZZ  ( b  x.  2 )  =  B ) )
51, 4bi2anan9 606 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( -.  2  ||  A  /\  2  ||  B )  <->  ( E. a  e.  ZZ  (
( 2  x.  a
)  +  1 )  =  A  /\  E. b  e.  ZZ  (
b  x.  2 )  =  B ) ) )
6 reeanv 2647 . . . . . 6  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  (
( ( 2  x.  a )  +  1 )  =  A  /\  ( b  x.  2 )  =  B )  <-> 
( E. a  e.  ZZ  ( ( 2  x.  a )  +  1 )  =  A  /\  E. b  e.  ZZ  ( b  x.  2 )  =  B ) )
7 zsubcl 9297 . . . . . . . . 9  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( a  -  b
)  e.  ZZ )
8 zcn 9261 . . . . . . . . . 10  |-  ( a  e.  ZZ  ->  a  e.  CC )
9 zcn 9261 . . . . . . . . . 10  |-  ( b  e.  ZZ  ->  b  e.  CC )
10 2cn 8993 . . . . . . . . . . . . 13  |-  2  e.  CC
11 subdi 8345 . . . . . . . . . . . . 13  |-  ( ( 2  e.  CC  /\  a  e.  CC  /\  b  e.  CC )  ->  (
2  x.  ( a  -  b ) )  =  ( ( 2  x.  a )  -  ( 2  x.  b
) ) )
1210, 11mp3an1 1324 . . . . . . . . . . . 12  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( 2  x.  (
a  -  b ) )  =  ( ( 2  x.  a )  -  ( 2  x.  b ) ) )
1312oveq1d 5893 . . . . . . . . . . 11  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( ( 2  x.  ( a  -  b
) )  +  1 )  =  ( ( ( 2  x.  a
)  -  ( 2  x.  b ) )  +  1 ) )
14 mulcl 7941 . . . . . . . . . . . . 13  |-  ( ( 2  e.  CC  /\  a  e.  CC )  ->  ( 2  x.  a
)  e.  CC )
1510, 14mpan 424 . . . . . . . . . . . 12  |-  ( a  e.  CC  ->  (
2  x.  a )  e.  CC )
16 mulcl 7941 . . . . . . . . . . . . 13  |-  ( ( 2  e.  CC  /\  b  e.  CC )  ->  ( 2  x.  b
)  e.  CC )
1710, 16mpan 424 . . . . . . . . . . . 12  |-  ( b  e.  CC  ->  (
2  x.  b )  e.  CC )
18 ax-1cn 7907 . . . . . . . . . . . . 13  |-  1  e.  CC
19 addsub 8171 . . . . . . . . . . . . 13  |-  ( ( ( 2  x.  a
)  e.  CC  /\  1  e.  CC  /\  (
2  x.  b )  e.  CC )  -> 
( ( ( 2  x.  a )  +  1 )  -  (
2  x.  b ) )  =  ( ( ( 2  x.  a
)  -  ( 2  x.  b ) )  +  1 ) )
2018, 19mp3an2 1325 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  a
)  e.  CC  /\  ( 2  x.  b
)  e.  CC )  ->  ( ( ( 2  x.  a )  +  1 )  -  ( 2  x.  b
) )  =  ( ( ( 2  x.  a )  -  (
2  x.  b ) )  +  1 ) )
2115, 17, 20syl2an 289 . . . . . . . . . . 11  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( ( ( 2  x.  a )  +  1 )  -  (
2  x.  b ) )  =  ( ( ( 2  x.  a
)  -  ( 2  x.  b ) )  +  1 ) )
22 mulcom 7943 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  CC  /\  b  e.  CC )  ->  ( 2  x.  b
)  =  ( b  x.  2 ) )
2310, 22mpan 424 . . . . . . . . . . . . 13  |-  ( b  e.  CC  ->  (
2  x.  b )  =  ( b  x.  2 ) )
2423oveq2d 5894 . . . . . . . . . . . 12  |-  ( b  e.  CC  ->  (
( ( 2  x.  a )  +  1 )  -  ( 2  x.  b ) )  =  ( ( ( 2  x.  a )  +  1 )  -  ( b  x.  2 ) ) )
2524adantl 277 . . . . . . . . . . 11  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( ( ( 2  x.  a )  +  1 )  -  (
2  x.  b ) )  =  ( ( ( 2  x.  a
)  +  1 )  -  ( b  x.  2 ) ) )
2613, 21, 253eqtr2d 2216 . . . . . . . . . 10  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( ( 2  x.  ( a  -  b
) )  +  1 )  =  ( ( ( 2  x.  a
)  +  1 )  -  ( b  x.  2 ) ) )
278, 9, 26syl2an 289 . . . . . . . . 9  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( 2  x.  ( a  -  b
) )  +  1 )  =  ( ( ( 2  x.  a
)  +  1 )  -  ( b  x.  2 ) ) )
28 oveq2 5886 . . . . . . . . . . . 12  |-  ( c  =  ( a  -  b )  ->  (
2  x.  c )  =  ( 2  x.  ( a  -  b
) ) )
2928oveq1d 5893 . . . . . . . . . . 11  |-  ( c  =  ( a  -  b )  ->  (
( 2  x.  c
)  +  1 )  =  ( ( 2  x.  ( a  -  b ) )  +  1 ) )
3029eqeq1d 2186 . . . . . . . . . 10  |-  ( c  =  ( a  -  b )  ->  (
( ( 2  x.  c )  +  1 )  =  ( ( ( 2  x.  a
)  +  1 )  -  ( b  x.  2 ) )  <->  ( (
2  x.  ( a  -  b ) )  +  1 )  =  ( ( ( 2  x.  a )  +  1 )  -  (
b  x.  2 ) ) ) )
3130rspcev 2843 . . . . . . . . 9  |-  ( ( ( a  -  b
)  e.  ZZ  /\  ( ( 2  x.  ( a  -  b
) )  +  1 )  =  ( ( ( 2  x.  a
)  +  1 )  -  ( b  x.  2 ) ) )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( ( ( 2  x.  a
)  +  1 )  -  ( b  x.  2 ) ) )
327, 27, 31syl2anc 411 . . . . . . . 8  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( ( ( 2  x.  a
)  +  1 )  -  ( b  x.  2 ) ) )
33 oveq12 5887 . . . . . . . . . 10  |-  ( ( ( ( 2  x.  a )  +  1 )  =  A  /\  ( b  x.  2 )  =  B )  ->  ( ( ( 2  x.  a )  +  1 )  -  ( b  x.  2 ) )  =  ( A  -  B ) )
3433eqeq2d 2189 . . . . . . . . 9  |-  ( ( ( ( 2  x.  a )  +  1 )  =  A  /\  ( b  x.  2 )  =  B )  ->  ( ( ( 2  x.  c )  +  1 )  =  ( ( ( 2  x.  a )  +  1 )  -  (
b  x.  2 ) )  <->  ( ( 2  x.  c )  +  1 )  =  ( A  -  B ) ) )
3534rexbidv 2478 . . . . . . . 8  |-  ( ( ( ( 2  x.  a )  +  1 )  =  A  /\  ( b  x.  2 )  =  B )  ->  ( E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( ( ( 2  x.  a )  +  1 )  -  ( b  x.  2 ) )  <->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  -  B ) ) )
3632, 35syl5ibcom 155 . . . . . . 7  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( ( ( 2  x.  a )  +  1 )  =  A  /\  ( b  x.  2 )  =  B )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  -  B ) ) )
3736rexlimivv 2600 . . . . . 6  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  (
( ( 2  x.  a )  +  1 )  =  A  /\  ( b  x.  2 )  =  B )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  -  B ) )
386, 37sylbir 135 . . . . 5  |-  ( ( E. a  e.  ZZ  ( ( 2  x.  a )  +  1 )  =  A  /\  E. b  e.  ZZ  (
b  x.  2 )  =  B )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  -  B ) )
395, 38biimtrdi 163 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( -.  2  ||  A  /\  2  ||  B )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  -  B ) ) )
4039imp 124 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  2  ||  B ) )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  -  B ) )
4140an4s 588 . 2  |-  ( ( ( A  e.  ZZ  /\ 
-.  2  ||  A
)  /\  ( B  e.  ZZ  /\  2  ||  B ) )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  -  B ) )
42 zsubcl 9297 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  -  B
)  e.  ZZ )
4342ad2ant2r 509 . . 3  |-  ( ( ( A  e.  ZZ  /\ 
-.  2  ||  A
)  /\  ( B  e.  ZZ  /\  2  ||  B ) )  -> 
( A  -  B
)  e.  ZZ )
44 odd2np1 11881 . . 3  |-  ( ( A  -  B )  e.  ZZ  ->  ( -.  2  ||  ( A  -  B )  <->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  -  B ) ) )
4543, 44syl 14 . 2  |-  ( ( ( A  e.  ZZ  /\ 
-.  2  ||  A
)  /\  ( B  e.  ZZ  /\  2  ||  B ) )  -> 
( -.  2  ||  ( A  -  B
)  <->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  -  B ) ) )
4641, 45mpbird 167 1  |-  ( ( ( A  e.  ZZ  /\ 
-.  2  ||  A
)  /\  ( B  e.  ZZ  /\  2  ||  B ) )  ->  -.  2  ||  ( A  -  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   E.wrex 2456   class class class wbr 4005  (class class class)co 5878   CCcc 7812   1c1 7815    + caddc 7817    x. cmul 7819    - cmin 8131   2c2 8973   ZZcz 9256    || cdvds 11797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-xor 1376  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542  df-div 8633  df-inn 8923  df-2 8981  df-n0 9180  df-z 9257  df-dvds 11798
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator