ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omeo Unicode version

Theorem omeo 12039
Description: The difference of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
omeo  |-  ( ( ( A  e.  ZZ  /\ 
-.  2  ||  A
)  /\  ( B  e.  ZZ  /\  2  ||  B ) )  ->  -.  2  ||  ( A  -  B ) )

Proof of Theorem omeo
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odd2np1 12014 . . . . . 6  |-  ( A  e.  ZZ  ->  ( -.  2  ||  A  <->  E. a  e.  ZZ  ( ( 2  x.  a )  +  1 )  =  A ) )
2 2z 9345 . . . . . . 7  |-  2  e.  ZZ
3 divides 11932 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  ||  B  <->  E. b  e.  ZZ  (
b  x.  2 )  =  B ) )
42, 3mpan 424 . . . . . 6  |-  ( B  e.  ZZ  ->  (
2  ||  B  <->  E. b  e.  ZZ  ( b  x.  2 )  =  B ) )
51, 4bi2anan9 606 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( -.  2  ||  A  /\  2  ||  B )  <->  ( E. a  e.  ZZ  (
( 2  x.  a
)  +  1 )  =  A  /\  E. b  e.  ZZ  (
b  x.  2 )  =  B ) ) )
6 reeanv 2664 . . . . . 6  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  (
( ( 2  x.  a )  +  1 )  =  A  /\  ( b  x.  2 )  =  B )  <-> 
( E. a  e.  ZZ  ( ( 2  x.  a )  +  1 )  =  A  /\  E. b  e.  ZZ  ( b  x.  2 )  =  B ) )
7 zsubcl 9358 . . . . . . . . 9  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( a  -  b
)  e.  ZZ )
8 zcn 9322 . . . . . . . . . 10  |-  ( a  e.  ZZ  ->  a  e.  CC )
9 zcn 9322 . . . . . . . . . 10  |-  ( b  e.  ZZ  ->  b  e.  CC )
10 2cn 9053 . . . . . . . . . . . . 13  |-  2  e.  CC
11 subdi 8404 . . . . . . . . . . . . 13  |-  ( ( 2  e.  CC  /\  a  e.  CC  /\  b  e.  CC )  ->  (
2  x.  ( a  -  b ) )  =  ( ( 2  x.  a )  -  ( 2  x.  b
) ) )
1210, 11mp3an1 1335 . . . . . . . . . . . 12  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( 2  x.  (
a  -  b ) )  =  ( ( 2  x.  a )  -  ( 2  x.  b ) ) )
1312oveq1d 5933 . . . . . . . . . . 11  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( ( 2  x.  ( a  -  b
) )  +  1 )  =  ( ( ( 2  x.  a
)  -  ( 2  x.  b ) )  +  1 ) )
14 mulcl 7999 . . . . . . . . . . . . 13  |-  ( ( 2  e.  CC  /\  a  e.  CC )  ->  ( 2  x.  a
)  e.  CC )
1510, 14mpan 424 . . . . . . . . . . . 12  |-  ( a  e.  CC  ->  (
2  x.  a )  e.  CC )
16 mulcl 7999 . . . . . . . . . . . . 13  |-  ( ( 2  e.  CC  /\  b  e.  CC )  ->  ( 2  x.  b
)  e.  CC )
1710, 16mpan 424 . . . . . . . . . . . 12  |-  ( b  e.  CC  ->  (
2  x.  b )  e.  CC )
18 ax-1cn 7965 . . . . . . . . . . . . 13  |-  1  e.  CC
19 addsub 8230 . . . . . . . . . . . . 13  |-  ( ( ( 2  x.  a
)  e.  CC  /\  1  e.  CC  /\  (
2  x.  b )  e.  CC )  -> 
( ( ( 2  x.  a )  +  1 )  -  (
2  x.  b ) )  =  ( ( ( 2  x.  a
)  -  ( 2  x.  b ) )  +  1 ) )
2018, 19mp3an2 1336 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  a
)  e.  CC  /\  ( 2  x.  b
)  e.  CC )  ->  ( ( ( 2  x.  a )  +  1 )  -  ( 2  x.  b
) )  =  ( ( ( 2  x.  a )  -  (
2  x.  b ) )  +  1 ) )
2115, 17, 20syl2an 289 . . . . . . . . . . 11  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( ( ( 2  x.  a )  +  1 )  -  (
2  x.  b ) )  =  ( ( ( 2  x.  a
)  -  ( 2  x.  b ) )  +  1 ) )
22 mulcom 8001 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  CC  /\  b  e.  CC )  ->  ( 2  x.  b
)  =  ( b  x.  2 ) )
2310, 22mpan 424 . . . . . . . . . . . . 13  |-  ( b  e.  CC  ->  (
2  x.  b )  =  ( b  x.  2 ) )
2423oveq2d 5934 . . . . . . . . . . . 12  |-  ( b  e.  CC  ->  (
( ( 2  x.  a )  +  1 )  -  ( 2  x.  b ) )  =  ( ( ( 2  x.  a )  +  1 )  -  ( b  x.  2 ) ) )
2524adantl 277 . . . . . . . . . . 11  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( ( ( 2  x.  a )  +  1 )  -  (
2  x.  b ) )  =  ( ( ( 2  x.  a
)  +  1 )  -  ( b  x.  2 ) ) )
2613, 21, 253eqtr2d 2232 . . . . . . . . . 10  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( ( 2  x.  ( a  -  b
) )  +  1 )  =  ( ( ( 2  x.  a
)  +  1 )  -  ( b  x.  2 ) ) )
278, 9, 26syl2an 289 . . . . . . . . 9  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( 2  x.  ( a  -  b
) )  +  1 )  =  ( ( ( 2  x.  a
)  +  1 )  -  ( b  x.  2 ) ) )
28 oveq2 5926 . . . . . . . . . . . 12  |-  ( c  =  ( a  -  b )  ->  (
2  x.  c )  =  ( 2  x.  ( a  -  b
) ) )
2928oveq1d 5933 . . . . . . . . . . 11  |-  ( c  =  ( a  -  b )  ->  (
( 2  x.  c
)  +  1 )  =  ( ( 2  x.  ( a  -  b ) )  +  1 ) )
3029eqeq1d 2202 . . . . . . . . . 10  |-  ( c  =  ( a  -  b )  ->  (
( ( 2  x.  c )  +  1 )  =  ( ( ( 2  x.  a
)  +  1 )  -  ( b  x.  2 ) )  <->  ( (
2  x.  ( a  -  b ) )  +  1 )  =  ( ( ( 2  x.  a )  +  1 )  -  (
b  x.  2 ) ) ) )
3130rspcev 2864 . . . . . . . . 9  |-  ( ( ( a  -  b
)  e.  ZZ  /\  ( ( 2  x.  ( a  -  b
) )  +  1 )  =  ( ( ( 2  x.  a
)  +  1 )  -  ( b  x.  2 ) ) )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( ( ( 2  x.  a
)  +  1 )  -  ( b  x.  2 ) ) )
327, 27, 31syl2anc 411 . . . . . . . 8  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( ( ( 2  x.  a
)  +  1 )  -  ( b  x.  2 ) ) )
33 oveq12 5927 . . . . . . . . . 10  |-  ( ( ( ( 2  x.  a )  +  1 )  =  A  /\  ( b  x.  2 )  =  B )  ->  ( ( ( 2  x.  a )  +  1 )  -  ( b  x.  2 ) )  =  ( A  -  B ) )
3433eqeq2d 2205 . . . . . . . . 9  |-  ( ( ( ( 2  x.  a )  +  1 )  =  A  /\  ( b  x.  2 )  =  B )  ->  ( ( ( 2  x.  c )  +  1 )  =  ( ( ( 2  x.  a )  +  1 )  -  (
b  x.  2 ) )  <->  ( ( 2  x.  c )  +  1 )  =  ( A  -  B ) ) )
3534rexbidv 2495 . . . . . . . 8  |-  ( ( ( ( 2  x.  a )  +  1 )  =  A  /\  ( b  x.  2 )  =  B )  ->  ( E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( ( ( 2  x.  a )  +  1 )  -  ( b  x.  2 ) )  <->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  -  B ) ) )
3632, 35syl5ibcom 155 . . . . . . 7  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( ( ( 2  x.  a )  +  1 )  =  A  /\  ( b  x.  2 )  =  B )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  -  B ) ) )
3736rexlimivv 2617 . . . . . 6  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  (
( ( 2  x.  a )  +  1 )  =  A  /\  ( b  x.  2 )  =  B )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  -  B ) )
386, 37sylbir 135 . . . . 5  |-  ( ( E. a  e.  ZZ  ( ( 2  x.  a )  +  1 )  =  A  /\  E. b  e.  ZZ  (
b  x.  2 )  =  B )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  -  B ) )
395, 38biimtrdi 163 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( -.  2  ||  A  /\  2  ||  B )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  -  B ) ) )
4039imp 124 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  2  ||  B ) )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  -  B ) )
4140an4s 588 . 2  |-  ( ( ( A  e.  ZZ  /\ 
-.  2  ||  A
)  /\  ( B  e.  ZZ  /\  2  ||  B ) )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  -  B ) )
42 zsubcl 9358 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  -  B
)  e.  ZZ )
4342ad2ant2r 509 . . 3  |-  ( ( ( A  e.  ZZ  /\ 
-.  2  ||  A
)  /\  ( B  e.  ZZ  /\  2  ||  B ) )  -> 
( A  -  B
)  e.  ZZ )
44 odd2np1 12014 . . 3  |-  ( ( A  -  B )  e.  ZZ  ->  ( -.  2  ||  ( A  -  B )  <->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  -  B ) ) )
4543, 44syl 14 . 2  |-  ( ( ( A  e.  ZZ  /\ 
-.  2  ||  A
)  /\  ( B  e.  ZZ  /\  2  ||  B ) )  -> 
( -.  2  ||  ( A  -  B
)  <->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  -  B ) ) )
4641, 45mpbird 167 1  |-  ( ( ( A  e.  ZZ  /\ 
-.  2  ||  A
)  /\  ( B  e.  ZZ  /\  2  ||  B ) )  ->  -.  2  ||  ( A  -  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   E.wrex 2473   class class class wbr 4029  (class class class)co 5918   CCcc 7870   1c1 7873    + caddc 7875    x. cmul 7877    - cmin 8190   2c2 9033   ZZcz 9317    || cdvds 11930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-dvds 11931
This theorem is referenced by:  gausslemma2dlem1f1o  15176
  Copyright terms: Public domain W3C validator