ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omeo Unicode version

Theorem omeo 12409
Description: The difference of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
omeo  |-  ( ( ( A  e.  ZZ  /\ 
-.  2  ||  A
)  /\  ( B  e.  ZZ  /\  2  ||  B ) )  ->  -.  2  ||  ( A  -  B ) )

Proof of Theorem omeo
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odd2np1 12384 . . . . . 6  |-  ( A  e.  ZZ  ->  ( -.  2  ||  A  <->  E. a  e.  ZZ  ( ( 2  x.  a )  +  1 )  =  A ) )
2 2z 9474 . . . . . . 7  |-  2  e.  ZZ
3 divides 12300 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  ||  B  <->  E. b  e.  ZZ  (
b  x.  2 )  =  B ) )
42, 3mpan 424 . . . . . 6  |-  ( B  e.  ZZ  ->  (
2  ||  B  <->  E. b  e.  ZZ  ( b  x.  2 )  =  B ) )
51, 4bi2anan9 608 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( -.  2  ||  A  /\  2  ||  B )  <->  ( E. a  e.  ZZ  (
( 2  x.  a
)  +  1 )  =  A  /\  E. b  e.  ZZ  (
b  x.  2 )  =  B ) ) )
6 reeanv 2701 . . . . . 6  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  (
( ( 2  x.  a )  +  1 )  =  A  /\  ( b  x.  2 )  =  B )  <-> 
( E. a  e.  ZZ  ( ( 2  x.  a )  +  1 )  =  A  /\  E. b  e.  ZZ  ( b  x.  2 )  =  B ) )
7 zsubcl 9487 . . . . . . . . 9  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( a  -  b
)  e.  ZZ )
8 zcn 9451 . . . . . . . . . 10  |-  ( a  e.  ZZ  ->  a  e.  CC )
9 zcn 9451 . . . . . . . . . 10  |-  ( b  e.  ZZ  ->  b  e.  CC )
10 2cn 9181 . . . . . . . . . . . . 13  |-  2  e.  CC
11 subdi 8531 . . . . . . . . . . . . 13  |-  ( ( 2  e.  CC  /\  a  e.  CC  /\  b  e.  CC )  ->  (
2  x.  ( a  -  b ) )  =  ( ( 2  x.  a )  -  ( 2  x.  b
) ) )
1210, 11mp3an1 1358 . . . . . . . . . . . 12  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( 2  x.  (
a  -  b ) )  =  ( ( 2  x.  a )  -  ( 2  x.  b ) ) )
1312oveq1d 6016 . . . . . . . . . . 11  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( ( 2  x.  ( a  -  b
) )  +  1 )  =  ( ( ( 2  x.  a
)  -  ( 2  x.  b ) )  +  1 ) )
14 mulcl 8126 . . . . . . . . . . . . 13  |-  ( ( 2  e.  CC  /\  a  e.  CC )  ->  ( 2  x.  a
)  e.  CC )
1510, 14mpan 424 . . . . . . . . . . . 12  |-  ( a  e.  CC  ->  (
2  x.  a )  e.  CC )
16 mulcl 8126 . . . . . . . . . . . . 13  |-  ( ( 2  e.  CC  /\  b  e.  CC )  ->  ( 2  x.  b
)  e.  CC )
1710, 16mpan 424 . . . . . . . . . . . 12  |-  ( b  e.  CC  ->  (
2  x.  b )  e.  CC )
18 ax-1cn 8092 . . . . . . . . . . . . 13  |-  1  e.  CC
19 addsub 8357 . . . . . . . . . . . . 13  |-  ( ( ( 2  x.  a
)  e.  CC  /\  1  e.  CC  /\  (
2  x.  b )  e.  CC )  -> 
( ( ( 2  x.  a )  +  1 )  -  (
2  x.  b ) )  =  ( ( ( 2  x.  a
)  -  ( 2  x.  b ) )  +  1 ) )
2018, 19mp3an2 1359 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  a
)  e.  CC  /\  ( 2  x.  b
)  e.  CC )  ->  ( ( ( 2  x.  a )  +  1 )  -  ( 2  x.  b
) )  =  ( ( ( 2  x.  a )  -  (
2  x.  b ) )  +  1 ) )
2115, 17, 20syl2an 289 . . . . . . . . . . 11  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( ( ( 2  x.  a )  +  1 )  -  (
2  x.  b ) )  =  ( ( ( 2  x.  a
)  -  ( 2  x.  b ) )  +  1 ) )
22 mulcom 8128 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  CC  /\  b  e.  CC )  ->  ( 2  x.  b
)  =  ( b  x.  2 ) )
2310, 22mpan 424 . . . . . . . . . . . . 13  |-  ( b  e.  CC  ->  (
2  x.  b )  =  ( b  x.  2 ) )
2423oveq2d 6017 . . . . . . . . . . . 12  |-  ( b  e.  CC  ->  (
( ( 2  x.  a )  +  1 )  -  ( 2  x.  b ) )  =  ( ( ( 2  x.  a )  +  1 )  -  ( b  x.  2 ) ) )
2524adantl 277 . . . . . . . . . . 11  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( ( ( 2  x.  a )  +  1 )  -  (
2  x.  b ) )  =  ( ( ( 2  x.  a
)  +  1 )  -  ( b  x.  2 ) ) )
2613, 21, 253eqtr2d 2268 . . . . . . . . . 10  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( ( 2  x.  ( a  -  b
) )  +  1 )  =  ( ( ( 2  x.  a
)  +  1 )  -  ( b  x.  2 ) ) )
278, 9, 26syl2an 289 . . . . . . . . 9  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( 2  x.  ( a  -  b
) )  +  1 )  =  ( ( ( 2  x.  a
)  +  1 )  -  ( b  x.  2 ) ) )
28 oveq2 6009 . . . . . . . . . . . 12  |-  ( c  =  ( a  -  b )  ->  (
2  x.  c )  =  ( 2  x.  ( a  -  b
) ) )
2928oveq1d 6016 . . . . . . . . . . 11  |-  ( c  =  ( a  -  b )  ->  (
( 2  x.  c
)  +  1 )  =  ( ( 2  x.  ( a  -  b ) )  +  1 ) )
3029eqeq1d 2238 . . . . . . . . . 10  |-  ( c  =  ( a  -  b )  ->  (
( ( 2  x.  c )  +  1 )  =  ( ( ( 2  x.  a
)  +  1 )  -  ( b  x.  2 ) )  <->  ( (
2  x.  ( a  -  b ) )  +  1 )  =  ( ( ( 2  x.  a )  +  1 )  -  (
b  x.  2 ) ) ) )
3130rspcev 2907 . . . . . . . . 9  |-  ( ( ( a  -  b
)  e.  ZZ  /\  ( ( 2  x.  ( a  -  b
) )  +  1 )  =  ( ( ( 2  x.  a
)  +  1 )  -  ( b  x.  2 ) ) )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( ( ( 2  x.  a
)  +  1 )  -  ( b  x.  2 ) ) )
327, 27, 31syl2anc 411 . . . . . . . 8  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( ( ( 2  x.  a
)  +  1 )  -  ( b  x.  2 ) ) )
33 oveq12 6010 . . . . . . . . . 10  |-  ( ( ( ( 2  x.  a )  +  1 )  =  A  /\  ( b  x.  2 )  =  B )  ->  ( ( ( 2  x.  a )  +  1 )  -  ( b  x.  2 ) )  =  ( A  -  B ) )
3433eqeq2d 2241 . . . . . . . . 9  |-  ( ( ( ( 2  x.  a )  +  1 )  =  A  /\  ( b  x.  2 )  =  B )  ->  ( ( ( 2  x.  c )  +  1 )  =  ( ( ( 2  x.  a )  +  1 )  -  (
b  x.  2 ) )  <->  ( ( 2  x.  c )  +  1 )  =  ( A  -  B ) ) )
3534rexbidv 2531 . . . . . . . 8  |-  ( ( ( ( 2  x.  a )  +  1 )  =  A  /\  ( b  x.  2 )  =  B )  ->  ( E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( ( ( 2  x.  a )  +  1 )  -  ( b  x.  2 ) )  <->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  -  B ) ) )
3632, 35syl5ibcom 155 . . . . . . 7  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( ( ( 2  x.  a )  +  1 )  =  A  /\  ( b  x.  2 )  =  B )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  -  B ) ) )
3736rexlimivv 2654 . . . . . 6  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  (
( ( 2  x.  a )  +  1 )  =  A  /\  ( b  x.  2 )  =  B )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  -  B ) )
386, 37sylbir 135 . . . . 5  |-  ( ( E. a  e.  ZZ  ( ( 2  x.  a )  +  1 )  =  A  /\  E. b  e.  ZZ  (
b  x.  2 )  =  B )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  -  B ) )
395, 38biimtrdi 163 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( -.  2  ||  A  /\  2  ||  B )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  -  B ) ) )
4039imp 124 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  2  ||  B ) )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  -  B ) )
4140an4s 590 . 2  |-  ( ( ( A  e.  ZZ  /\ 
-.  2  ||  A
)  /\  ( B  e.  ZZ  /\  2  ||  B ) )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  -  B ) )
42 zsubcl 9487 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  -  B
)  e.  ZZ )
4342ad2ant2r 509 . . 3  |-  ( ( ( A  e.  ZZ  /\ 
-.  2  ||  A
)  /\  ( B  e.  ZZ  /\  2  ||  B ) )  -> 
( A  -  B
)  e.  ZZ )
44 odd2np1 12384 . . 3  |-  ( ( A  -  B )  e.  ZZ  ->  ( -.  2  ||  ( A  -  B )  <->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  -  B ) ) )
4543, 44syl 14 . 2  |-  ( ( ( A  e.  ZZ  /\ 
-.  2  ||  A
)  /\  ( B  e.  ZZ  /\  2  ||  B ) )  -> 
( -.  2  ||  ( A  -  B
)  <->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  -  B ) ) )
4641, 45mpbird 167 1  |-  ( ( ( A  e.  ZZ  /\ 
-.  2  ||  A
)  /\  ( B  e.  ZZ  /\  2  ||  B ) )  ->  -.  2  ||  ( A  -  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   E.wrex 2509   class class class wbr 4083  (class class class)co 6001   CCcc 7997   1c1 8000    + caddc 8002    x. cmul 8004    - cmin 8317   2c2 9161   ZZcz 9446    || cdvds 12298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-xor 1418  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-n0 9370  df-z 9447  df-dvds 12299
This theorem is referenced by:  gausslemma2dlem1f1o  15739
  Copyright terms: Public domain W3C validator