![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3lt4 | Unicode version |
Description: 3 is less than 4. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
3lt4 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3re 9056 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | ltp1i 8924 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | df-4 9043 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | breqtrri 4056 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: class class
class wbr 4029 (class class class)co 5918
![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-xp 4665 df-iota 5215 df-fv 5262 df-ov 5921 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-2 9041 df-3 9042 df-4 9043 |
This theorem is referenced by: 2lt4 9155 3lt5 9158 3lt6 9163 3lt7 9169 3lt8 9176 3lt9 9184 3halfnz 9414 3lt10 9584 fz0to4untppr 10190 fldiv4p1lem1div2 10374 ef01bndlem 11899 sin01bnd 11900 flodddiv4 12075 starvndxnmulrndx 12761 srngstrd 12763 dveflem 14872 tangtx 14973 gausslemma2dlem4 15180 ex-fl 15217 |
Copyright terms: Public domain | W3C validator |