![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2lt3 | Unicode version |
Description: 2 is less than 3. (Contributed by NM, 26-Sep-2010.) |
Ref | Expression |
---|---|
2lt3 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 8992 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | ltp1i 8865 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | df-3 8982 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | breqtrri 4032 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: class class
class wbr 4005 (class class class)co 5878
![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-addcom 7914 ax-addass 7916 ax-i2m1 7919 ax-0lt1 7920 ax-0id 7922 ax-rnegex 7923 ax-pre-ltadd 7930 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-xp 4634 df-iota 5180 df-fv 5226 df-ov 5881 df-pnf 7997 df-mnf 7998 df-ltxr 8000 df-2 8981 df-3 8982 |
This theorem is referenced by: 1lt3 9093 2lt4 9095 2lt6 9104 2lt7 9110 2lt8 9117 2lt9 9125 3halfnz 9353 2lt10 9524 uzuzle23 9574 uz3m2nn 9576 fztpval 10086 expnass 10629 cos01gt0 11773 3lcm2e6 12163 plusgndxnmulrndx 12594 rngstrg 12596 slotsdifunifndx 12689 coseq00topi 14396 coseq0negpitopi 14397 cos02pilt1 14412 2logb9irr 14529 2logb3irr 14531 2logb9irrap 14535 ex-fl 14617 |
Copyright terms: Public domain | W3C validator |