ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climmul Unicode version

Theorem climmul 10776
Description: Limit of the product of two converging sequences. Proposition 12-2.1(c) of [Gleason] p. 168. (Contributed by NM, 27-Dec-2005.) (Proof shortened by Mario Carneiro, 1-Feb-2014.)
Hypotheses
Ref Expression
climadd.1  |-  Z  =  ( ZZ>= `  M )
climadd.2  |-  ( ph  ->  M  e.  ZZ )
climadd.4  |-  ( ph  ->  F  ~~>  A )
climadd.6  |-  ( ph  ->  H  e.  X )
climadd.7  |-  ( ph  ->  G  ~~>  B )
climadd.8  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
climadd.9  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  CC )
climmul.h  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( ( F `
 k )  x.  ( G `  k
) ) )
Assertion
Ref Expression
climmul  |-  ( ph  ->  H  ~~>  ( A  x.  B ) )
Distinct variable groups:    B, k    k, F    ph, k    A, k   
k, G    k, H    k, M    k, Z
Allowed substitution hint:    X( k)

Proof of Theorem climmul
Dummy variables  u  v  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climadd.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 climadd.2 . 2  |-  ( ph  ->  M  e.  ZZ )
3 climadd.4 . . 3  |-  ( ph  ->  F  ~~>  A )
4 climcl 10731 . . 3  |-  ( F  ~~>  A  ->  A  e.  CC )
53, 4syl 14 . 2  |-  ( ph  ->  A  e.  CC )
6 climadd.7 . . 3  |-  ( ph  ->  G  ~~>  B )
7 climcl 10731 . . 3  |-  ( G  ~~>  B  ->  B  e.  CC )
86, 7syl 14 . 2  |-  ( ph  ->  B  e.  CC )
9 mulcl 7530 . . 3  |-  ( ( u  e.  CC  /\  v  e.  CC )  ->  ( u  x.  v
)  e.  CC )
109adantl 272 . 2  |-  ( (
ph  /\  ( u  e.  CC  /\  v  e.  CC ) )  -> 
( u  x.  v
)  e.  CC )
11 climadd.6 . 2  |-  ( ph  ->  H  e.  X )
12 simpr 109 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
135adantr 271 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  A  e.  CC )
148adantr 271 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  B  e.  CC )
15 mulcn2 10762 . . 3  |-  ( ( x  e.  RR+  /\  A  e.  CC  /\  B  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  A ) )  <  y  /\  ( abs `  ( v  -  B ) )  <  z )  -> 
( abs `  (
( u  x.  v
)  -  ( A  x.  B ) ) )  <  x ) )
1612, 13, 14, 15syl3anc 1175 . 2  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  A ) )  <  y  /\  ( abs `  ( v  -  B ) )  <  z )  -> 
( abs `  (
( u  x.  v
)  -  ( A  x.  B ) ) )  <  x ) )
17 climadd.8 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
18 climadd.9 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  CC )
19 climmul.h . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( ( F `
 k )  x.  ( G `  k
) ) )
201, 2, 5, 8, 10, 3, 6, 11, 16, 17, 18, 19climcn2 10759 1  |-  ( ph  ->  H  ~~>  ( A  x.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1290    e. wcel 1439   A.wral 2360   E.wrex 2361   class class class wbr 3851   ` cfv 5028  (class class class)co 5666   CCcc 7409    x. cmul 7416    < clt 7583    - cmin 7714   ZZcz 8811   ZZ>=cuz 9080   RR+crp 9195   abscabs 10491    ~~> cli 10727
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-mulrcl 7505  ax-addcom 7506  ax-mulcom 7507  ax-addass 7508  ax-mulass 7509  ax-distr 7510  ax-i2m1 7511  ax-0lt1 7512  ax-1rid 7513  ax-0id 7514  ax-rnegex 7515  ax-precex 7516  ax-cnre 7517  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520  ax-pre-apti 7521  ax-pre-ltadd 7522  ax-pre-mulgt0 7523  ax-pre-mulext 7524  ax-arch 7525  ax-caucvg 7526
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-if 3398  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-po 4132  df-iso 4133  df-iord 4202  df-on 4204  df-ilim 4205  df-suc 4207  df-iom 4419  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-frec 6170  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-sub 7716  df-neg 7717  df-reap 8113  df-ap 8120  df-div 8201  df-inn 8484  df-2 8542  df-3 8543  df-4 8544  df-n0 8735  df-z 8812  df-uz 9081  df-rp 9196  df-iseq 9914  df-seq3 9915  df-exp 10016  df-cj 10337  df-re 10338  df-im 10339  df-rsqrt 10492  df-abs 10493  df-clim 10728
This theorem is referenced by:  climmulc2  10780
  Copyright terms: Public domain W3C validator