ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climadd Unicode version

Theorem climadd 11200
Description: Limit of the sum of two converging sequences. Proposition 12-2.1(a) of [Gleason] p. 168. (Contributed by NM, 24-Sep-2005.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climadd.1  |-  Z  =  ( ZZ>= `  M )
climadd.2  |-  ( ph  ->  M  e.  ZZ )
climadd.4  |-  ( ph  ->  F  ~~>  A )
climadd.6  |-  ( ph  ->  H  e.  X )
climadd.7  |-  ( ph  ->  G  ~~>  B )
climadd.8  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
climadd.9  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  CC )
climadd.h  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( ( F `
 k )  +  ( G `  k
) ) )
Assertion
Ref Expression
climadd  |-  ( ph  ->  H  ~~>  ( A  +  B ) )
Distinct variable groups:    B, k    k, F    ph, k    A, k   
k, G    k, H    k, M    k, Z
Allowed substitution hint:    X( k)

Proof of Theorem climadd
Dummy variables  u  v  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climadd.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 climadd.2 . 2  |-  ( ph  ->  M  e.  ZZ )
3 climadd.4 . . 3  |-  ( ph  ->  F  ~~>  A )
4 climcl 11156 . . 3  |-  ( F  ~~>  A  ->  A  e.  CC )
53, 4syl 14 . 2  |-  ( ph  ->  A  e.  CC )
6 climadd.7 . . 3  |-  ( ph  ->  G  ~~>  B )
7 climcl 11156 . . 3  |-  ( G  ~~>  B  ->  B  e.  CC )
86, 7syl 14 . 2  |-  ( ph  ->  B  e.  CC )
9 addcl 7836 . . 3  |-  ( ( u  e.  CC  /\  v  e.  CC )  ->  ( u  +  v )  e.  CC )
109adantl 275 . 2  |-  ( (
ph  /\  ( u  e.  CC  /\  v  e.  CC ) )  -> 
( u  +  v )  e.  CC )
11 climadd.6 . 2  |-  ( ph  ->  H  e.  X )
12 simpr 109 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
135adantr 274 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  A  e.  CC )
148adantr 274 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  B  e.  CC )
15 addcn2 11184 . . 3  |-  ( ( x  e.  RR+  /\  A  e.  CC  /\  B  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  A ) )  <  y  /\  ( abs `  ( v  -  B ) )  <  z )  -> 
( abs `  (
( u  +  v )  -  ( A  +  B ) ) )  <  x ) )
1612, 13, 14, 15syl3anc 1217 . 2  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  A ) )  <  y  /\  ( abs `  ( v  -  B ) )  <  z )  -> 
( abs `  (
( u  +  v )  -  ( A  +  B ) ) )  <  x ) )
17 climadd.8 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
18 climadd.9 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  CC )
19 climadd.h . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( ( F `
 k )  +  ( G `  k
) ) )
201, 2, 5, 8, 10, 3, 6, 11, 16, 17, 18, 19climcn2 11183 1  |-  ( ph  ->  H  ~~>  ( A  +  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 2125   A.wral 2432   E.wrex 2433   class class class wbr 3961   ` cfv 5163  (class class class)co 5814   CCcc 7709    + caddc 7714    < clt 7891    - cmin 8025   ZZcz 9146   ZZ>=cuz 9418   RR+crp 9538   abscabs 10874    ~~> cli 11152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829  ax-arch 7830  ax-caucvg 7831
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-frec 6328  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-2 8871  df-3 8872  df-4 8873  df-n0 9070  df-z 9147  df-uz 9419  df-rp 9539  df-seqfrec 10323  df-exp 10397  df-cj 10719  df-re 10720  df-im 10721  df-rsqrt 10875  df-abs 10876  df-clim 11153
This theorem is referenced by:  climaddc1  11203  climcvg1nlem  11223  isumadd  11305
  Copyright terms: Public domain W3C validator