| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > clim2divap | Unicode version | ||
| Description: The limit of an infinite product with an initial segment removed. (Contributed by Scott Fenton, 20-Dec-2017.) |
| Ref | Expression |
|---|---|
| clim2div.1 |
|
| clim2div.2 |
|
| clim2div.3 |
|
| clim2div.4 |
|
| clim2divap.5 |
|
| Ref | Expression |
|---|---|
| clim2divap |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 |
. . 3
| |
| 2 | clim2div.2 |
. . . . 5
| |
| 3 | eluzelz 9627 |
. . . . . 6
| |
| 4 | clim2div.1 |
. . . . . 6
| |
| 5 | 3, 4 | eleq2s 2291 |
. . . . 5
|
| 6 | 2, 5 | syl 14 |
. . . 4
|
| 7 | 6 | peano2zd 9468 |
. . 3
|
| 8 | clim2div.4 |
. . 3
| |
| 9 | eluzel2 9623 |
. . . . . . . 8
| |
| 10 | 9, 4 | eleq2s 2291 |
. . . . . . 7
|
| 11 | 2, 10 | syl 14 |
. . . . . 6
|
| 12 | clim2div.3 |
. . . . . 6
| |
| 13 | 4, 11, 12 | prodf 11720 |
. . . . 5
|
| 14 | 13, 2 | ffvelcdmd 5701 |
. . . 4
|
| 15 | clim2divap.5 |
. . . 4
| |
| 16 | 14, 15 | recclapd 8825 |
. . 3
|
| 17 | seqex 10558 |
. . . 4
| |
| 18 | 17 | a1i 9 |
. . 3
|
| 19 | 2, 4 | eleqtrdi 2289 |
. . . . . . 7
|
| 20 | peano2uz 9674 |
. . . . . . 7
| |
| 21 | 19, 20 | syl 14 |
. . . . . 6
|
| 22 | 21, 4 | eleqtrrdi 2290 |
. . . . 5
|
| 23 | 4 | uztrn2 9636 |
. . . . 5
|
| 24 | 22, 23 | sylan 283 |
. . . 4
|
| 25 | 13 | ffvelcdmda 5700 |
. . . 4
|
| 26 | 24, 25 | syldan 282 |
. . 3
|
| 27 | mulcl 8023 |
. . . . . . . 8
| |
| 28 | 27 | adantl 277 |
. . . . . . 7
|
| 29 | mulass 8027 |
. . . . . . . 8
| |
| 30 | 29 | adantl 277 |
. . . . . . 7
|
| 31 | simpr 110 |
. . . . . . 7
| |
| 32 | 19 | adantr 276 |
. . . . . . 7
|
| 33 | 4 | eleq2i 2263 |
. . . . . . . . 9
|
| 34 | 33, 12 | sylan2br 288 |
. . . . . . . 8
|
| 35 | 34 | adantlr 477 |
. . . . . . 7
|
| 36 | 28, 30, 31, 32, 35 | seq3split 10597 |
. . . . . 6
|
| 37 | 36 | eqcomd 2202 |
. . . . 5
|
| 38 | 14 | adantr 276 |
. . . . . 6
|
| 39 | 4 | uztrn2 9636 |
. . . . . . . . . 10
|
| 40 | 22, 39 | sylan 283 |
. . . . . . . . 9
|
| 41 | 40, 12 | syldan 282 |
. . . . . . . 8
|
| 42 | 1, 7, 41 | prodf 11720 |
. . . . . . 7
|
| 43 | 42 | ffvelcdmda 5700 |
. . . . . 6
|
| 44 | 15 | adantr 276 |
. . . . . 6
|
| 45 | 26, 38, 43, 44 | divmulapd 8856 |
. . . . 5
|
| 46 | 37, 45 | mpbird 167 |
. . . 4
|
| 47 | 26, 38, 44 | divrecap2d 8838 |
. . . 4
|
| 48 | 46, 47 | eqtr3d 2231 |
. . 3
|
| 49 | 1, 7, 8, 16, 18, 26, 48 | climmulc2 11513 |
. 2
|
| 50 | climcl 11464 |
. . . 4
| |
| 51 | 8, 50 | syl 14 |
. . 3
|
| 52 | 51, 14, 15 | divrecap2d 8838 |
. 2
|
| 53 | 49, 52 | breqtrrd 4062 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-uz 9619 df-rp 9746 df-fz 10101 df-seqfrec 10557 df-exp 10648 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-clim 11461 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |