ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clim2divap Unicode version

Theorem clim2divap 11561
Description: The limit of an infinite product with an initial segment removed. (Contributed by Scott Fenton, 20-Dec-2017.)
Hypotheses
Ref Expression
clim2div.1  |-  Z  =  ( ZZ>= `  M )
clim2div.2  |-  ( ph  ->  N  e.  Z )
clim2div.3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
clim2div.4  |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  A )
clim2divap.5  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 N ) #  0 )
Assertion
Ref Expression
clim2divap  |-  ( ph  ->  seq ( N  + 
1 ) (  x.  ,  F )  ~~>  ( A  /  (  seq M
(  x.  ,  F
) `  N )
) )
Distinct variable groups:    k, F    ph, k    k, M    k, N    k, Z
Allowed substitution hint:    A( k)

Proof of Theorem clim2divap
Dummy variables  j  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2187 . . 3  |-  ( ZZ>= `  ( N  +  1
) )  =  (
ZZ>= `  ( N  + 
1 ) )
2 clim2div.2 . . . . 5  |-  ( ph  ->  N  e.  Z )
3 eluzelz 9550 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
4 clim2div.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
53, 4eleq2s 2282 . . . . 5  |-  ( N  e.  Z  ->  N  e.  ZZ )
62, 5syl 14 . . . 4  |-  ( ph  ->  N  e.  ZZ )
76peano2zd 9391 . . 3  |-  ( ph  ->  ( N  +  1 )  e.  ZZ )
8 clim2div.4 . . 3  |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  A )
9 eluzel2 9546 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
109, 4eleq2s 2282 . . . . . . 7  |-  ( N  e.  Z  ->  M  e.  ZZ )
112, 10syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
12 clim2div.3 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
134, 11, 12prodf 11559 . . . . 5  |-  ( ph  ->  seq M (  x.  ,  F ) : Z --> CC )
1413, 2ffvelcdmd 5665 . . . 4  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 N )  e.  CC )
15 clim2divap.5 . . . 4  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 N ) #  0 )
1614, 15recclapd 8751 . . 3  |-  ( ph  ->  ( 1  /  (  seq M (  x.  ,  F ) `  N
) )  e.  CC )
17 seqex 10460 . . . 4  |-  seq ( N  +  1 ) (  x.  ,  F
)  e.  _V
1817a1i 9 . . 3  |-  ( ph  ->  seq ( N  + 
1 ) (  x.  ,  F )  e. 
_V )
192, 4eleqtrdi 2280 . . . . . . 7  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
20 peano2uz 9596 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( ZZ>= `  M )
)
2119, 20syl 14 . . . . . 6  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= `  M ) )
2221, 4eleqtrrdi 2281 . . . . 5  |-  ( ph  ->  ( N  +  1 )  e.  Z )
234uztrn2 9558 . . . . 5  |-  ( ( ( N  +  1 )  e.  Z  /\  j  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
j  e.  Z )
2422, 23sylan 283 . . . 4  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  j  e.  Z )
2513ffvelcdmda 5664 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  (  seq M (  x.  ,  F ) `  j
)  e.  CC )
2624, 25syldan 282 . . 3  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  x.  ,  F ) `  j
)  e.  CC )
27 mulcl 7951 . . . . . . . 8  |-  ( ( k  e.  CC  /\  x  e.  CC )  ->  ( k  x.  x
)  e.  CC )
2827adantl 277 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  ( k  e.  CC  /\  x  e.  CC ) )  -> 
( k  x.  x
)  e.  CC )
29 mulass 7955 . . . . . . . 8  |-  ( ( k  e.  CC  /\  x  e.  CC  /\  y  e.  CC )  ->  (
( k  x.  x
)  x.  y )  =  ( k  x.  ( x  x.  y
) ) )
3029adantl 277 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  ( k  e.  CC  /\  x  e.  CC  /\  y  e.  CC ) )  -> 
( ( k  x.  x )  x.  y
)  =  ( k  x.  ( x  x.  y ) ) )
31 simpr 110 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  j  e.  ( ZZ>= `  ( N  +  1 ) ) )
3219adantr 276 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  e.  ( ZZ>= `  M )
)
334eleq2i 2254 . . . . . . . . 9  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
3433, 12sylan2br 288 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
3534adantlr 477 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
3628, 30, 31, 32, 35seq3split 10492 . . . . . 6  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  x.  ,  F ) `  j
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  j
) ) )
3736eqcomd 2193 . . . . 5  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (  seq M (  x.  ,  F ) `  N
)  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  j
) )  =  (  seq M (  x.  ,  F ) `  j ) )
3814adantr 276 . . . . . 6  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  x.  ,  F ) `  N
)  e.  CC )
394uztrn2 9558 . . . . . . . . . 10  |-  ( ( ( N  +  1 )  e.  Z  /\  k  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
k  e.  Z )
4022, 39sylan 283 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  k  e.  Z )
4140, 12syldan 282 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( F `  k )  e.  CC )
421, 7, 41prodf 11559 . . . . . . 7  |-  ( ph  ->  seq ( N  + 
1 ) (  x.  ,  F ) : ( ZZ>= `  ( N  +  1 ) ) --> CC )
4342ffvelcdmda 5664 . . . . . 6  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq ( N  +  1
) (  x.  ,  F ) `  j
)  e.  CC )
4415adantr 276 . . . . . 6  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  x.  ,  F ) `  N
) #  0 )
4526, 38, 43, 44divmulapd 8782 . . . . 5  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
(  seq M (  x.  ,  F ) `  j )  /  (  seq M (  x.  ,  F ) `  N
) )  =  (  seq ( N  + 
1 ) (  x.  ,  F ) `  j )  <->  ( (  seq M (  x.  ,  F ) `  N
)  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  j
) )  =  (  seq M (  x.  ,  F ) `  j ) ) )
4637, 45mpbird 167 . . . 4  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (  seq M (  x.  ,  F ) `  j
)  /  (  seq M (  x.  ,  F ) `  N
) )  =  (  seq ( N  + 
1 ) (  x.  ,  F ) `  j ) )
4726, 38, 44divrecap2d 8764 . . . 4  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (  seq M (  x.  ,  F ) `  j
)  /  (  seq M (  x.  ,  F ) `  N
) )  =  ( ( 1  /  (  seq M (  x.  ,  F ) `  N
) )  x.  (  seq M (  x.  ,  F ) `  j
) ) )
4846, 47eqtr3d 2222 . . 3  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq ( N  +  1
) (  x.  ,  F ) `  j
)  =  ( ( 1  /  (  seq M (  x.  ,  F ) `  N
) )  x.  (  seq M (  x.  ,  F ) `  j
) ) )
491, 7, 8, 16, 18, 26, 48climmulc2 11352 . 2  |-  ( ph  ->  seq ( N  + 
1 ) (  x.  ,  F )  ~~>  ( ( 1  /  (  seq M (  x.  ,  F ) `  N
) )  x.  A
) )
50 climcl 11303 . . . 4  |-  (  seq M (  x.  ,  F )  ~~>  A  ->  A  e.  CC )
518, 50syl 14 . . 3  |-  ( ph  ->  A  e.  CC )
5251, 14, 15divrecap2d 8764 . 2  |-  ( ph  ->  ( A  /  (  seq M (  x.  ,  F ) `  N
) )  =  ( ( 1  /  (  seq M (  x.  ,  F ) `  N
) )  x.  A
) )
5349, 52breqtrrd 4043 1  |-  ( ph  ->  seq ( N  + 
1 ) (  x.  ,  F )  ~~>  ( A  /  (  seq M
(  x.  ,  F
) `  N )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 979    = wceq 1363    e. wcel 2158   _Vcvv 2749   class class class wbr 4015   ` cfv 5228  (class class class)co 5888   CCcc 7822   0cc0 7824   1c1 7825    + caddc 7827    x. cmul 7829   # cap 8551    / cdiv 8642   ZZcz 9266   ZZ>=cuz 9541    seqcseq 10458    ~~> cli 11299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940  ax-pre-mulgt0 7941  ax-pre-mulext 7942  ax-arch 7943  ax-caucvg 7944
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-frec 6405  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-reap 8545  df-ap 8552  df-div 8643  df-inn 8933  df-2 8991  df-3 8992  df-4 8993  df-n0 9190  df-z 9267  df-uz 9542  df-rp 9667  df-fz 10022  df-seqfrec 10459  df-exp 10533  df-cj 10864  df-re 10865  df-im 10866  df-rsqrt 11020  df-abs 11021  df-clim 11300
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator