ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clim2divap Unicode version

Theorem clim2divap 11724
Description: The limit of an infinite product with an initial segment removed. (Contributed by Scott Fenton, 20-Dec-2017.)
Hypotheses
Ref Expression
clim2div.1  |-  Z  =  ( ZZ>= `  M )
clim2div.2  |-  ( ph  ->  N  e.  Z )
clim2div.3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
clim2div.4  |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  A )
clim2divap.5  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 N ) #  0 )
Assertion
Ref Expression
clim2divap  |-  ( ph  ->  seq ( N  + 
1 ) (  x.  ,  F )  ~~>  ( A  /  (  seq M
(  x.  ,  F
) `  N )
) )
Distinct variable groups:    k, F    ph, k    k, M    k, N    k, Z
Allowed substitution hint:    A( k)

Proof of Theorem clim2divap
Dummy variables  j  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . 3  |-  ( ZZ>= `  ( N  +  1
) )  =  (
ZZ>= `  ( N  + 
1 ) )
2 clim2div.2 . . . . 5  |-  ( ph  ->  N  e.  Z )
3 eluzelz 9629 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
4 clim2div.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
53, 4eleq2s 2291 . . . . 5  |-  ( N  e.  Z  ->  N  e.  ZZ )
62, 5syl 14 . . . 4  |-  ( ph  ->  N  e.  ZZ )
76peano2zd 9470 . . 3  |-  ( ph  ->  ( N  +  1 )  e.  ZZ )
8 clim2div.4 . . 3  |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  A )
9 eluzel2 9625 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
109, 4eleq2s 2291 . . . . . . 7  |-  ( N  e.  Z  ->  M  e.  ZZ )
112, 10syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
12 clim2div.3 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
134, 11, 12prodf 11722 . . . . 5  |-  ( ph  ->  seq M (  x.  ,  F ) : Z --> CC )
1413, 2ffvelcdmd 5701 . . . 4  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 N )  e.  CC )
15 clim2divap.5 . . . 4  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 N ) #  0 )
1614, 15recclapd 8827 . . 3  |-  ( ph  ->  ( 1  /  (  seq M (  x.  ,  F ) `  N
) )  e.  CC )
17 seqex 10560 . . . 4  |-  seq ( N  +  1 ) (  x.  ,  F
)  e.  _V
1817a1i 9 . . 3  |-  ( ph  ->  seq ( N  + 
1 ) (  x.  ,  F )  e. 
_V )
192, 4eleqtrdi 2289 . . . . . . 7  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
20 peano2uz 9676 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( ZZ>= `  M )
)
2119, 20syl 14 . . . . . 6  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= `  M ) )
2221, 4eleqtrrdi 2290 . . . . 5  |-  ( ph  ->  ( N  +  1 )  e.  Z )
234uztrn2 9638 . . . . 5  |-  ( ( ( N  +  1 )  e.  Z  /\  j  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
j  e.  Z )
2422, 23sylan 283 . . . 4  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  j  e.  Z )
2513ffvelcdmda 5700 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  (  seq M (  x.  ,  F ) `  j
)  e.  CC )
2624, 25syldan 282 . . 3  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  x.  ,  F ) `  j
)  e.  CC )
27 mulcl 8025 . . . . . . . 8  |-  ( ( k  e.  CC  /\  x  e.  CC )  ->  ( k  x.  x
)  e.  CC )
2827adantl 277 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  ( k  e.  CC  /\  x  e.  CC ) )  -> 
( k  x.  x
)  e.  CC )
29 mulass 8029 . . . . . . . 8  |-  ( ( k  e.  CC  /\  x  e.  CC  /\  y  e.  CC )  ->  (
( k  x.  x
)  x.  y )  =  ( k  x.  ( x  x.  y
) ) )
3029adantl 277 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  ( k  e.  CC  /\  x  e.  CC  /\  y  e.  CC ) )  -> 
( ( k  x.  x )  x.  y
)  =  ( k  x.  ( x  x.  y ) ) )
31 simpr 110 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  j  e.  ( ZZ>= `  ( N  +  1 ) ) )
3219adantr 276 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  e.  ( ZZ>= `  M )
)
334eleq2i 2263 . . . . . . . . 9  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
3433, 12sylan2br 288 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
3534adantlr 477 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
3628, 30, 31, 32, 35seq3split 10599 . . . . . 6  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  x.  ,  F ) `  j
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  j
) ) )
3736eqcomd 2202 . . . . 5  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (  seq M (  x.  ,  F ) `  N
)  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  j
) )  =  (  seq M (  x.  ,  F ) `  j ) )
3814adantr 276 . . . . . 6  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  x.  ,  F ) `  N
)  e.  CC )
394uztrn2 9638 . . . . . . . . . 10  |-  ( ( ( N  +  1 )  e.  Z  /\  k  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
k  e.  Z )
4022, 39sylan 283 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  k  e.  Z )
4140, 12syldan 282 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( F `  k )  e.  CC )
421, 7, 41prodf 11722 . . . . . . 7  |-  ( ph  ->  seq ( N  + 
1 ) (  x.  ,  F ) : ( ZZ>= `  ( N  +  1 ) ) --> CC )
4342ffvelcdmda 5700 . . . . . 6  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq ( N  +  1
) (  x.  ,  F ) `  j
)  e.  CC )
4415adantr 276 . . . . . 6  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  x.  ,  F ) `  N
) #  0 )
4526, 38, 43, 44divmulapd 8858 . . . . 5  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
(  seq M (  x.  ,  F ) `  j )  /  (  seq M (  x.  ,  F ) `  N
) )  =  (  seq ( N  + 
1 ) (  x.  ,  F ) `  j )  <->  ( (  seq M (  x.  ,  F ) `  N
)  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  j
) )  =  (  seq M (  x.  ,  F ) `  j ) ) )
4637, 45mpbird 167 . . . 4  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (  seq M (  x.  ,  F ) `  j
)  /  (  seq M (  x.  ,  F ) `  N
) )  =  (  seq ( N  + 
1 ) (  x.  ,  F ) `  j ) )
4726, 38, 44divrecap2d 8840 . . . 4  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (  seq M (  x.  ,  F ) `  j
)  /  (  seq M (  x.  ,  F ) `  N
) )  =  ( ( 1  /  (  seq M (  x.  ,  F ) `  N
) )  x.  (  seq M (  x.  ,  F ) `  j
) ) )
4846, 47eqtr3d 2231 . . 3  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq ( N  +  1
) (  x.  ,  F ) `  j
)  =  ( ( 1  /  (  seq M (  x.  ,  F ) `  N
) )  x.  (  seq M (  x.  ,  F ) `  j
) ) )
491, 7, 8, 16, 18, 26, 48climmulc2 11515 . 2  |-  ( ph  ->  seq ( N  + 
1 ) (  x.  ,  F )  ~~>  ( ( 1  /  (  seq M (  x.  ,  F ) `  N
) )  x.  A
) )
50 climcl 11466 . . . 4  |-  (  seq M (  x.  ,  F )  ~~>  A  ->  A  e.  CC )
518, 50syl 14 . . 3  |-  ( ph  ->  A  e.  CC )
5251, 14, 15divrecap2d 8840 . 2  |-  ( ph  ->  ( A  /  (  seq M (  x.  ,  F ) `  N
) )  =  ( ( 1  /  (  seq M (  x.  ,  F ) `  N
) )  x.  A
) )
5349, 52breqtrrd 4062 1  |-  ( ph  ->  seq ( N  + 
1 ) (  x.  ,  F )  ~~>  ( A  /  (  seq M
(  x.  ,  F
) `  N )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   _Vcvv 2763   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   CCcc 7896   0cc0 7898   1c1 7899    + caddc 7901    x. cmul 7903   # cap 8627    / cdiv 8718   ZZcz 9345   ZZ>=cuz 9620    seqcseq 10558    ~~> cli 11462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-rp 9748  df-fz 10103  df-seqfrec 10559  df-exp 10650  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-clim 11463
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator