ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clim2divap Unicode version

Theorem clim2divap 11481
Description: The limit of an infinite product with an initial segment removed. (Contributed by Scott Fenton, 20-Dec-2017.)
Hypotheses
Ref Expression
clim2div.1  |-  Z  =  ( ZZ>= `  M )
clim2div.2  |-  ( ph  ->  N  e.  Z )
clim2div.3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
clim2div.4  |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  A )
clim2divap.5  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 N ) #  0 )
Assertion
Ref Expression
clim2divap  |-  ( ph  ->  seq ( N  + 
1 ) (  x.  ,  F )  ~~>  ( A  /  (  seq M
(  x.  ,  F
) `  N )
) )
Distinct variable groups:    k, F    ph, k    k, M    k, N    k, Z
Allowed substitution hint:    A( k)

Proof of Theorem clim2divap
Dummy variables  j  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2165 . . 3  |-  ( ZZ>= `  ( N  +  1
) )  =  (
ZZ>= `  ( N  + 
1 ) )
2 clim2div.2 . . . . 5  |-  ( ph  ->  N  e.  Z )
3 eluzelz 9475 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
4 clim2div.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
53, 4eleq2s 2261 . . . . 5  |-  ( N  e.  Z  ->  N  e.  ZZ )
62, 5syl 14 . . . 4  |-  ( ph  ->  N  e.  ZZ )
76peano2zd 9316 . . 3  |-  ( ph  ->  ( N  +  1 )  e.  ZZ )
8 clim2div.4 . . 3  |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  A )
9 eluzel2 9471 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
109, 4eleq2s 2261 . . . . . . 7  |-  ( N  e.  Z  ->  M  e.  ZZ )
112, 10syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
12 clim2div.3 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
134, 11, 12prodf 11479 . . . . 5  |-  ( ph  ->  seq M (  x.  ,  F ) : Z --> CC )
1413, 2ffvelrnd 5621 . . . 4  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 N )  e.  CC )
15 clim2divap.5 . . . 4  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 N ) #  0 )
1614, 15recclapd 8677 . . 3  |-  ( ph  ->  ( 1  /  (  seq M (  x.  ,  F ) `  N
) )  e.  CC )
17 seqex 10382 . . . 4  |-  seq ( N  +  1 ) (  x.  ,  F
)  e.  _V
1817a1i 9 . . 3  |-  ( ph  ->  seq ( N  + 
1 ) (  x.  ,  F )  e. 
_V )
192, 4eleqtrdi 2259 . . . . . . 7  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
20 peano2uz 9521 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( ZZ>= `  M )
)
2119, 20syl 14 . . . . . 6  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= `  M ) )
2221, 4eleqtrrdi 2260 . . . . 5  |-  ( ph  ->  ( N  +  1 )  e.  Z )
234uztrn2 9483 . . . . 5  |-  ( ( ( N  +  1 )  e.  Z  /\  j  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
j  e.  Z )
2422, 23sylan 281 . . . 4  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  j  e.  Z )
2513ffvelrnda 5620 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  (  seq M (  x.  ,  F ) `  j
)  e.  CC )
2624, 25syldan 280 . . 3  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  x.  ,  F ) `  j
)  e.  CC )
27 mulcl 7880 . . . . . . . 8  |-  ( ( k  e.  CC  /\  x  e.  CC )  ->  ( k  x.  x
)  e.  CC )
2827adantl 275 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  ( k  e.  CC  /\  x  e.  CC ) )  -> 
( k  x.  x
)  e.  CC )
29 mulass 7884 . . . . . . . 8  |-  ( ( k  e.  CC  /\  x  e.  CC  /\  y  e.  CC )  ->  (
( k  x.  x
)  x.  y )  =  ( k  x.  ( x  x.  y
) ) )
3029adantl 275 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  ( k  e.  CC  /\  x  e.  CC  /\  y  e.  CC ) )  -> 
( ( k  x.  x )  x.  y
)  =  ( k  x.  ( x  x.  y ) ) )
31 simpr 109 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  j  e.  ( ZZ>= `  ( N  +  1 ) ) )
3219adantr 274 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  e.  ( ZZ>= `  M )
)
334eleq2i 2233 . . . . . . . . 9  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
3433, 12sylan2br 286 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
3534adantlr 469 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
3628, 30, 31, 32, 35seq3split 10414 . . . . . 6  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  x.  ,  F ) `  j
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  j
) ) )
3736eqcomd 2171 . . . . 5  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (  seq M (  x.  ,  F ) `  N
)  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  j
) )  =  (  seq M (  x.  ,  F ) `  j ) )
3814adantr 274 . . . . . 6  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  x.  ,  F ) `  N
)  e.  CC )
394uztrn2 9483 . . . . . . . . . 10  |-  ( ( ( N  +  1 )  e.  Z  /\  k  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
k  e.  Z )
4022, 39sylan 281 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  k  e.  Z )
4140, 12syldan 280 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( F `  k )  e.  CC )
421, 7, 41prodf 11479 . . . . . . 7  |-  ( ph  ->  seq ( N  + 
1 ) (  x.  ,  F ) : ( ZZ>= `  ( N  +  1 ) ) --> CC )
4342ffvelrnda 5620 . . . . . 6  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq ( N  +  1
) (  x.  ,  F ) `  j
)  e.  CC )
4415adantr 274 . . . . . 6  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  x.  ,  F ) `  N
) #  0 )
4526, 38, 43, 44divmulapd 8708 . . . . 5  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
(  seq M (  x.  ,  F ) `  j )  /  (  seq M (  x.  ,  F ) `  N
) )  =  (  seq ( N  + 
1 ) (  x.  ,  F ) `  j )  <->  ( (  seq M (  x.  ,  F ) `  N
)  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  j
) )  =  (  seq M (  x.  ,  F ) `  j ) ) )
4637, 45mpbird 166 . . . 4  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (  seq M (  x.  ,  F ) `  j
)  /  (  seq M (  x.  ,  F ) `  N
) )  =  (  seq ( N  + 
1 ) (  x.  ,  F ) `  j ) )
4726, 38, 44divrecap2d 8690 . . . 4  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (  seq M (  x.  ,  F ) `  j
)  /  (  seq M (  x.  ,  F ) `  N
) )  =  ( ( 1  /  (  seq M (  x.  ,  F ) `  N
) )  x.  (  seq M (  x.  ,  F ) `  j
) ) )
4846, 47eqtr3d 2200 . . 3  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq ( N  +  1
) (  x.  ,  F ) `  j
)  =  ( ( 1  /  (  seq M (  x.  ,  F ) `  N
) )  x.  (  seq M (  x.  ,  F ) `  j
) ) )
491, 7, 8, 16, 18, 26, 48climmulc2 11272 . 2  |-  ( ph  ->  seq ( N  + 
1 ) (  x.  ,  F )  ~~>  ( ( 1  /  (  seq M (  x.  ,  F ) `  N
) )  x.  A
) )
50 climcl 11223 . . . 4  |-  (  seq M (  x.  ,  F )  ~~>  A  ->  A  e.  CC )
518, 50syl 14 . . 3  |-  ( ph  ->  A  e.  CC )
5251, 14, 15divrecap2d 8690 . 2  |-  ( ph  ->  ( A  /  (  seq M (  x.  ,  F ) `  N
) )  =  ( ( 1  /  (  seq M (  x.  ,  F ) `  N
) )  x.  A
) )
5349, 52breqtrrd 4010 1  |-  ( ph  ->  seq ( N  + 
1 ) (  x.  ,  F )  ~~>  ( A  /  (  seq M
(  x.  ,  F
) `  N )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 968    = wceq 1343    e. wcel 2136   _Vcvv 2726   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   CCcc 7751   0cc0 7753   1c1 7754    + caddc 7756    x. cmul 7758   # cap 8479    / cdiv 8568   ZZcz 9191   ZZ>=cuz 9466    seqcseq 10380    ~~> cli 11219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-fz 9945  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator