ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clim2divap Unicode version

Theorem clim2divap 11966
Description: The limit of an infinite product with an initial segment removed. (Contributed by Scott Fenton, 20-Dec-2017.)
Hypotheses
Ref Expression
clim2div.1  |-  Z  =  ( ZZ>= `  M )
clim2div.2  |-  ( ph  ->  N  e.  Z )
clim2div.3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
clim2div.4  |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  A )
clim2divap.5  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 N ) #  0 )
Assertion
Ref Expression
clim2divap  |-  ( ph  ->  seq ( N  + 
1 ) (  x.  ,  F )  ~~>  ( A  /  (  seq M
(  x.  ,  F
) `  N )
) )
Distinct variable groups:    k, F    ph, k    k, M    k, N    k, Z
Allowed substitution hint:    A( k)

Proof of Theorem clim2divap
Dummy variables  j  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2207 . . 3  |-  ( ZZ>= `  ( N  +  1
) )  =  (
ZZ>= `  ( N  + 
1 ) )
2 clim2div.2 . . . . 5  |-  ( ph  ->  N  e.  Z )
3 eluzelz 9692 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
4 clim2div.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
53, 4eleq2s 2302 . . . . 5  |-  ( N  e.  Z  ->  N  e.  ZZ )
62, 5syl 14 . . . 4  |-  ( ph  ->  N  e.  ZZ )
76peano2zd 9533 . . 3  |-  ( ph  ->  ( N  +  1 )  e.  ZZ )
8 clim2div.4 . . 3  |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  A )
9 eluzel2 9688 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
109, 4eleq2s 2302 . . . . . . 7  |-  ( N  e.  Z  ->  M  e.  ZZ )
112, 10syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
12 clim2div.3 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
134, 11, 12prodf 11964 . . . . 5  |-  ( ph  ->  seq M (  x.  ,  F ) : Z --> CC )
1413, 2ffvelcdmd 5739 . . . 4  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 N )  e.  CC )
15 clim2divap.5 . . . 4  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 N ) #  0 )
1614, 15recclapd 8889 . . 3  |-  ( ph  ->  ( 1  /  (  seq M (  x.  ,  F ) `  N
) )  e.  CC )
17 seqex 10631 . . . 4  |-  seq ( N  +  1 ) (  x.  ,  F
)  e.  _V
1817a1i 9 . . 3  |-  ( ph  ->  seq ( N  + 
1 ) (  x.  ,  F )  e. 
_V )
192, 4eleqtrdi 2300 . . . . . . 7  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
20 peano2uz 9739 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( ZZ>= `  M )
)
2119, 20syl 14 . . . . . 6  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= `  M ) )
2221, 4eleqtrrdi 2301 . . . . 5  |-  ( ph  ->  ( N  +  1 )  e.  Z )
234uztrn2 9701 . . . . 5  |-  ( ( ( N  +  1 )  e.  Z  /\  j  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
j  e.  Z )
2422, 23sylan 283 . . . 4  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  j  e.  Z )
2513ffvelcdmda 5738 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  (  seq M (  x.  ,  F ) `  j
)  e.  CC )
2624, 25syldan 282 . . 3  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  x.  ,  F ) `  j
)  e.  CC )
27 mulcl 8087 . . . . . . . 8  |-  ( ( k  e.  CC  /\  x  e.  CC )  ->  ( k  x.  x
)  e.  CC )
2827adantl 277 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  ( k  e.  CC  /\  x  e.  CC ) )  -> 
( k  x.  x
)  e.  CC )
29 mulass 8091 . . . . . . . 8  |-  ( ( k  e.  CC  /\  x  e.  CC  /\  y  e.  CC )  ->  (
( k  x.  x
)  x.  y )  =  ( k  x.  ( x  x.  y
) ) )
3029adantl 277 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  ( k  e.  CC  /\  x  e.  CC  /\  y  e.  CC ) )  -> 
( ( k  x.  x )  x.  y
)  =  ( k  x.  ( x  x.  y ) ) )
31 simpr 110 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  j  e.  ( ZZ>= `  ( N  +  1 ) ) )
3219adantr 276 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  e.  ( ZZ>= `  M )
)
334eleq2i 2274 . . . . . . . . 9  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
3433, 12sylan2br 288 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
3534adantlr 477 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
3628, 30, 31, 32, 35seq3split 10670 . . . . . 6  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  x.  ,  F ) `  j
)  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  j
) ) )
3736eqcomd 2213 . . . . 5  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (  seq M (  x.  ,  F ) `  N
)  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  j
) )  =  (  seq M (  x.  ,  F ) `  j ) )
3814adantr 276 . . . . . 6  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  x.  ,  F ) `  N
)  e.  CC )
394uztrn2 9701 . . . . . . . . . 10  |-  ( ( ( N  +  1 )  e.  Z  /\  k  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
k  e.  Z )
4022, 39sylan 283 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  k  e.  Z )
4140, 12syldan 282 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( F `  k )  e.  CC )
421, 7, 41prodf 11964 . . . . . . 7  |-  ( ph  ->  seq ( N  + 
1 ) (  x.  ,  F ) : ( ZZ>= `  ( N  +  1 ) ) --> CC )
4342ffvelcdmda 5738 . . . . . 6  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq ( N  +  1
) (  x.  ,  F ) `  j
)  e.  CC )
4415adantr 276 . . . . . 6  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  x.  ,  F ) `  N
) #  0 )
4526, 38, 43, 44divmulapd 8920 . . . . 5  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
(  seq M (  x.  ,  F ) `  j )  /  (  seq M (  x.  ,  F ) `  N
) )  =  (  seq ( N  + 
1 ) (  x.  ,  F ) `  j )  <->  ( (  seq M (  x.  ,  F ) `  N
)  x.  (  seq ( N  +  1 ) (  x.  ,  F ) `  j
) )  =  (  seq M (  x.  ,  F ) `  j ) ) )
4637, 45mpbird 167 . . . 4  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (  seq M (  x.  ,  F ) `  j
)  /  (  seq M (  x.  ,  F ) `  N
) )  =  (  seq ( N  + 
1 ) (  x.  ,  F ) `  j ) )
4726, 38, 44divrecap2d 8902 . . . 4  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (  seq M (  x.  ,  F ) `  j
)  /  (  seq M (  x.  ,  F ) `  N
) )  =  ( ( 1  /  (  seq M (  x.  ,  F ) `  N
) )  x.  (  seq M (  x.  ,  F ) `  j
) ) )
4846, 47eqtr3d 2242 . . 3  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq ( N  +  1
) (  x.  ,  F ) `  j
)  =  ( ( 1  /  (  seq M (  x.  ,  F ) `  N
) )  x.  (  seq M (  x.  ,  F ) `  j
) ) )
491, 7, 8, 16, 18, 26, 48climmulc2 11757 . 2  |-  ( ph  ->  seq ( N  + 
1 ) (  x.  ,  F )  ~~>  ( ( 1  /  (  seq M (  x.  ,  F ) `  N
) )  x.  A
) )
50 climcl 11708 . . . 4  |-  (  seq M (  x.  ,  F )  ~~>  A  ->  A  e.  CC )
518, 50syl 14 . . 3  |-  ( ph  ->  A  e.  CC )
5251, 14, 15divrecap2d 8902 . 2  |-  ( ph  ->  ( A  /  (  seq M (  x.  ,  F ) `  N
) )  =  ( ( 1  /  (  seq M (  x.  ,  F ) `  N
) )  x.  A
) )
5349, 52breqtrrd 4087 1  |-  ( ph  ->  seq ( N  + 
1 ) (  x.  ,  F )  ~~>  ( A  /  (  seq M
(  x.  ,  F
) `  N )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2178   _Vcvv 2776   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   CCcc 7958   0cc0 7960   1c1 7961    + caddc 7963    x. cmul 7965   # cap 8689    / cdiv 8780   ZZcz 9407   ZZ>=cuz 9683    seqcseq 10629    ~~> cli 11704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-rp 9811  df-fz 10166  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator