ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climsub Unicode version

Theorem climsub 11218
Description: Limit of the difference of two converging sequences. Proposition 12-2.1(b) of [Gleason] p. 168. (Contributed by NM, 4-Aug-2007.) (Proof shortened by Mario Carneiro, 1-Feb-2014.)
Hypotheses
Ref Expression
climadd.1  |-  Z  =  ( ZZ>= `  M )
climadd.2  |-  ( ph  ->  M  e.  ZZ )
climadd.4  |-  ( ph  ->  F  ~~>  A )
climadd.6  |-  ( ph  ->  H  e.  X )
climadd.7  |-  ( ph  ->  G  ~~>  B )
climadd.8  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
climadd.9  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  CC )
climsub.h  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( ( F `
 k )  -  ( G `  k ) ) )
Assertion
Ref Expression
climsub  |-  ( ph  ->  H  ~~>  ( A  -  B ) )
Distinct variable groups:    B, k    k, F    ph, k    A, k   
k, G    k, H    k, M    k, Z
Allowed substitution hint:    X( k)

Proof of Theorem climsub
Dummy variables  u  v  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climadd.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 climadd.2 . 2  |-  ( ph  ->  M  e.  ZZ )
3 climadd.4 . . 3  |-  ( ph  ->  F  ~~>  A )
4 climcl 11172 . . 3  |-  ( F  ~~>  A  ->  A  e.  CC )
53, 4syl 14 . 2  |-  ( ph  ->  A  e.  CC )
6 climadd.7 . . 3  |-  ( ph  ->  G  ~~>  B )
7 climcl 11172 . . 3  |-  ( G  ~~>  B  ->  B  e.  CC )
86, 7syl 14 . 2  |-  ( ph  ->  B  e.  CC )
9 subcl 8068 . . 3  |-  ( ( u  e.  CC  /\  v  e.  CC )  ->  ( u  -  v
)  e.  CC )
109adantl 275 . 2  |-  ( (
ph  /\  ( u  e.  CC  /\  v  e.  CC ) )  -> 
( u  -  v
)  e.  CC )
11 climadd.6 . 2  |-  ( ph  ->  H  e.  X )
12 simpr 109 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
135adantr 274 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  A  e.  CC )
148adantr 274 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  B  e.  CC )
15 subcn2 11201 . . 3  |-  ( ( x  e.  RR+  /\  A  e.  CC  /\  B  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  A ) )  <  y  /\  ( abs `  ( v  -  B ) )  <  z )  -> 
( abs `  (
( u  -  v
)  -  ( A  -  B ) ) )  <  x ) )
1612, 13, 14, 15syl3anc 1220 . 2  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  A ) )  <  y  /\  ( abs `  ( v  -  B ) )  <  z )  -> 
( abs `  (
( u  -  v
)  -  ( A  -  B ) ) )  <  x ) )
17 climadd.8 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
18 climadd.9 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  CC )
19 climsub.h . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( ( F `
 k )  -  ( G `  k ) ) )
201, 2, 5, 8, 10, 3, 6, 11, 16, 17, 18, 19climcn2 11199 1  |-  ( ph  ->  H  ~~>  ( A  -  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335    e. wcel 2128   A.wral 2435   E.wrex 2436   class class class wbr 3965   ` cfv 5169  (class class class)co 5821   CCcc 7724    < clt 7906    - cmin 8040   ZZcz 9161   ZZ>=cuz 9433   RR+crp 9553   abscabs 10890    ~~> cli 11168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-mulrcl 7825  ax-addcom 7826  ax-mulcom 7827  ax-addass 7828  ax-mulass 7829  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-1rid 7833  ax-0id 7834  ax-rnegex 7835  ax-precex 7836  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-apti 7841  ax-pre-ltadd 7842  ax-pre-mulgt0 7843  ax-pre-mulext 7844  ax-arch 7845  ax-caucvg 7846
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-recs 6249  df-frec 6335  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-reap 8444  df-ap 8451  df-div 8540  df-inn 8828  df-2 8886  df-3 8887  df-4 8888  df-n0 9085  df-z 9162  df-uz 9434  df-rp 9554  df-seqfrec 10338  df-exp 10412  df-cj 10735  df-re 10736  df-im 10737  df-rsqrt 10891  df-abs 10892  df-clim 11169
This theorem is referenced by:  climsubc1  11222  climsubc2  11223  climle  11224
  Copyright terms: Public domain W3C validator