ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt22f GIF version

Theorem cnmpt22f 14531
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt21.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmpt21.a (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
cnmpt2t.b (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
cnmpt22f.f (𝜑𝐹 ∈ ((𝐿 ×t 𝑀) Cn 𝑁))
Assertion
Ref Expression
cnmpt22f (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴𝐹𝐵)) ∈ ((𝐽 ×t 𝐾) Cn 𝑁))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem cnmpt22f
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnmpt21.j . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 cnmpt21.k . 2 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 cnmpt21.a . 2 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
4 cnmpt2t.b . 2 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
5 cntop2 14438 . . . 4 ((𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿) → 𝐿 ∈ Top)
63, 5syl 14 . . 3 (𝜑𝐿 ∈ Top)
7 toptopon2 14255 . . 3 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘ 𝐿))
86, 7sylib 122 . 2 (𝜑𝐿 ∈ (TopOn‘ 𝐿))
9 cntop2 14438 . . . 4 ((𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀) → 𝑀 ∈ Top)
104, 9syl 14 . . 3 (𝜑𝑀 ∈ Top)
11 toptopon2 14255 . . 3 (𝑀 ∈ Top ↔ 𝑀 ∈ (TopOn‘ 𝑀))
1210, 11sylib 122 . 2 (𝜑𝑀 ∈ (TopOn‘ 𝑀))
13 txtopon 14498 . . . . . . 7 ((𝐿 ∈ (TopOn‘ 𝐿) ∧ 𝑀 ∈ (TopOn‘ 𝑀)) → (𝐿 ×t 𝑀) ∈ (TopOn‘( 𝐿 × 𝑀)))
148, 12, 13syl2anc 411 . . . . . 6 (𝜑 → (𝐿 ×t 𝑀) ∈ (TopOn‘( 𝐿 × 𝑀)))
15 cnmpt22f.f . . . . . . . 8 (𝜑𝐹 ∈ ((𝐿 ×t 𝑀) Cn 𝑁))
16 cntop2 14438 . . . . . . . 8 (𝐹 ∈ ((𝐿 ×t 𝑀) Cn 𝑁) → 𝑁 ∈ Top)
1715, 16syl 14 . . . . . . 7 (𝜑𝑁 ∈ Top)
18 toptopon2 14255 . . . . . . 7 (𝑁 ∈ Top ↔ 𝑁 ∈ (TopOn‘ 𝑁))
1917, 18sylib 122 . . . . . 6 (𝜑𝑁 ∈ (TopOn‘ 𝑁))
20 cnf2 14441 . . . . . 6 (((𝐿 ×t 𝑀) ∈ (TopOn‘( 𝐿 × 𝑀)) ∧ 𝑁 ∈ (TopOn‘ 𝑁) ∧ 𝐹 ∈ ((𝐿 ×t 𝑀) Cn 𝑁)) → 𝐹:( 𝐿 × 𝑀)⟶ 𝑁)
2114, 19, 15, 20syl3anc 1249 . . . . 5 (𝜑𝐹:( 𝐿 × 𝑀)⟶ 𝑁)
2221ffnd 5408 . . . 4 (𝜑𝐹 Fn ( 𝐿 × 𝑀))
23 fnovim 6031 . . . 4 (𝐹 Fn ( 𝐿 × 𝑀) → 𝐹 = (𝑧 𝐿, 𝑤 𝑀 ↦ (𝑧𝐹𝑤)))
2422, 23syl 14 . . 3 (𝜑𝐹 = (𝑧 𝐿, 𝑤 𝑀 ↦ (𝑧𝐹𝑤)))
2524, 15eqeltrrd 2274 . 2 (𝜑 → (𝑧 𝐿, 𝑤 𝑀 ↦ (𝑧𝐹𝑤)) ∈ ((𝐿 ×t 𝑀) Cn 𝑁))
26 oveq12 5931 . 2 ((𝑧 = 𝐴𝑤 = 𝐵) → (𝑧𝐹𝑤) = (𝐴𝐹𝐵))
271, 2, 3, 4, 8, 12, 25, 26cnmpt22 14530 1 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴𝐹𝐵)) ∈ ((𝐽 ×t 𝐾) Cn 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167   cuni 3839   × cxp 4661   Fn wfn 5253  wf 5254  cfv 5258  (class class class)co 5922  cmpo 5924  Topctop 14233  TopOnctopon 14246   Cn ccn 14421   ×t ctx 14488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-map 6709  df-topgen 12931  df-top 14234  df-topon 14247  df-bases 14279  df-cn 14424  df-tx 14489
This theorem is referenced by:  cnmptcom  14534  divcnap  14801  cnrehmeocntop  14846
  Copyright terms: Public domain W3C validator