| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnmpt22f | GIF version | ||
| Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnmpt21.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| cnmpt21.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| cnmpt21.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) |
| cnmpt2t.b | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) |
| cnmpt22f.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐿 ×t 𝑀) Cn 𝑁)) |
| Ref | Expression |
|---|---|
| cnmpt22f | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴𝐹𝐵)) ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmpt21.j | . 2 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 2 | cnmpt21.k | . 2 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
| 3 | cnmpt21.a | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) | |
| 4 | cnmpt2t.b | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) | |
| 5 | cntop2 14616 | . . . 4 ⊢ ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿) → 𝐿 ∈ Top) | |
| 6 | 3, 5 | syl 14 | . . 3 ⊢ (𝜑 → 𝐿 ∈ Top) |
| 7 | toptopon2 14433 | . . 3 ⊢ (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘∪ 𝐿)) | |
| 8 | 6, 7 | sylib 122 | . 2 ⊢ (𝜑 → 𝐿 ∈ (TopOn‘∪ 𝐿)) |
| 9 | cntop2 14616 | . . . 4 ⊢ ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀) → 𝑀 ∈ Top) | |
| 10 | 4, 9 | syl 14 | . . 3 ⊢ (𝜑 → 𝑀 ∈ Top) |
| 11 | toptopon2 14433 | . . 3 ⊢ (𝑀 ∈ Top ↔ 𝑀 ∈ (TopOn‘∪ 𝑀)) | |
| 12 | 10, 11 | sylib 122 | . 2 ⊢ (𝜑 → 𝑀 ∈ (TopOn‘∪ 𝑀)) |
| 13 | txtopon 14676 | . . . . . . 7 ⊢ ((𝐿 ∈ (TopOn‘∪ 𝐿) ∧ 𝑀 ∈ (TopOn‘∪ 𝑀)) → (𝐿 ×t 𝑀) ∈ (TopOn‘(∪ 𝐿 × ∪ 𝑀))) | |
| 14 | 8, 12, 13 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → (𝐿 ×t 𝑀) ∈ (TopOn‘(∪ 𝐿 × ∪ 𝑀))) |
| 15 | cnmpt22f.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ ((𝐿 ×t 𝑀) Cn 𝑁)) | |
| 16 | cntop2 14616 | . . . . . . . 8 ⊢ (𝐹 ∈ ((𝐿 ×t 𝑀) Cn 𝑁) → 𝑁 ∈ Top) | |
| 17 | 15, 16 | syl 14 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ Top) |
| 18 | toptopon2 14433 | . . . . . . 7 ⊢ (𝑁 ∈ Top ↔ 𝑁 ∈ (TopOn‘∪ 𝑁)) | |
| 19 | 17, 18 | sylib 122 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ (TopOn‘∪ 𝑁)) |
| 20 | cnf2 14619 | . . . . . 6 ⊢ (((𝐿 ×t 𝑀) ∈ (TopOn‘(∪ 𝐿 × ∪ 𝑀)) ∧ 𝑁 ∈ (TopOn‘∪ 𝑁) ∧ 𝐹 ∈ ((𝐿 ×t 𝑀) Cn 𝑁)) → 𝐹:(∪ 𝐿 × ∪ 𝑀)⟶∪ 𝑁) | |
| 21 | 14, 19, 15, 20 | syl3anc 1249 | . . . . 5 ⊢ (𝜑 → 𝐹:(∪ 𝐿 × ∪ 𝑀)⟶∪ 𝑁) |
| 22 | 21 | ffnd 5425 | . . . 4 ⊢ (𝜑 → 𝐹 Fn (∪ 𝐿 × ∪ 𝑀)) |
| 23 | fnovim 6053 | . . . 4 ⊢ (𝐹 Fn (∪ 𝐿 × ∪ 𝑀) → 𝐹 = (𝑧 ∈ ∪ 𝐿, 𝑤 ∈ ∪ 𝑀 ↦ (𝑧𝐹𝑤))) | |
| 24 | 22, 23 | syl 14 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ∪ 𝐿, 𝑤 ∈ ∪ 𝑀 ↦ (𝑧𝐹𝑤))) |
| 25 | 24, 15 | eqeltrrd 2282 | . 2 ⊢ (𝜑 → (𝑧 ∈ ∪ 𝐿, 𝑤 ∈ ∪ 𝑀 ↦ (𝑧𝐹𝑤)) ∈ ((𝐿 ×t 𝑀) Cn 𝑁)) |
| 26 | oveq12 5952 | . 2 ⊢ ((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) → (𝑧𝐹𝑤) = (𝐴𝐹𝐵)) | |
| 27 | 1, 2, 3, 4, 8, 12, 25, 26 | cnmpt22 14708 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴𝐹𝐵)) ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 ∪ cuni 3849 × cxp 4672 Fn wfn 5265 ⟶wf 5266 ‘cfv 5270 (class class class)co 5943 ∈ cmpo 5945 Topctop 14411 TopOnctopon 14424 Cn ccn 14599 ×t ctx 14666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-map 6736 df-topgen 13034 df-top 14412 df-topon 14425 df-bases 14457 df-cn 14602 df-tx 14667 |
| This theorem is referenced by: cnmptcom 14712 divcnap 14979 cnrehmeocntop 15024 |
| Copyright terms: Public domain | W3C validator |