ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decnncl Unicode version

Theorem decnncl 9597
Description: Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
decnncl.1  |-  A  e. 
NN0
decnncl.2  |-  B  e.  NN
Assertion
Ref Expression
decnncl  |- ; A B  e.  NN

Proof of Theorem decnncl
StepHypRef Expression
1 dfdec10 9581 . 2  |- ; A B  =  ( (; 1 0  x.  A
)  +  B )
2 10nn0 9595 . . 3  |- ; 1 0  e.  NN0
3 decnncl.1 . . 3  |-  A  e. 
NN0
4 decnncl.2 . . 3  |-  B  e.  NN
52, 3, 4numnncl 9587 . 2  |-  ( (; 1
0  x.  A )  +  B )  e.  NN
61, 5eqeltri 2302 1  |- ; A B  e.  NN
Colors of variables: wff set class
Syntax hints:    e. wcel 2200  (class class class)co 6001   0cc0 7999   1c1 8000    + caddc 8002    x. cmul 8004   NNcn 9110   NN0cn0 9369  ;cdc 9578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-sub 8319  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-9 9176  df-n0 9370  df-dec 9579
This theorem is referenced by:  ocndx  13244  ocid  13245  dsndx  13248  dsid  13249  dsslid  13250  dsndxnn  13251  unifndx  13259  unifid  13260  unifndxnn  13261  slotsdifunifndx  13265  homndx  13266  homid  13267  homslid  13268  ccondx  13269  ccoid  13270  ccoslid  13271  imasvalstrd  13303  prdsvalstrd  13304  cnfldstr  14522  edgfid  15807  edgfndx  15808  edgfndxnn  15809
  Copyright terms: Public domain W3C validator