| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prdsvalstrd | Unicode version | ||
| Description: Structure product value is a structure. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| Ref | Expression |
|---|---|
| prdsvalstrd.b |
|
| prdsvalstrd.p |
|
| prdsvalstrd.m |
|
| prdsvalstrd.s |
|
| prdsvalstrd.c |
|
| prdsvalstrd.i |
|
| prdsvalstrd.t |
|
| prdsvalstrd.l |
|
| prdsvalstrd.d |
|
| prdsvalstrd.h |
|
| prdsvalstrd.x |
|
| Ref | Expression |
|---|---|
| prdsvalstrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unass 3331 |
. 2
| |
| 2 | eqid 2206 |
. . . 4
| |
| 3 | prdsvalstrd.b |
. . . 4
| |
| 4 | prdsvalstrd.p |
. . . 4
| |
| 5 | prdsvalstrd.m |
. . . 4
| |
| 6 | prdsvalstrd.s |
. . . 4
| |
| 7 | prdsvalstrd.c |
. . . 4
| |
| 8 | prdsvalstrd.i |
. . . 4
| |
| 9 | prdsvalstrd.t |
. . . 4
| |
| 10 | prdsvalstrd.l |
. . . 4
| |
| 11 | prdsvalstrd.d |
. . . 4
| |
| 12 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | imasvalstrd 13146 |
. . 3
|
| 13 | prdsvalstrd.h |
. . . 4
| |
| 14 | prdsvalstrd.x |
. . . 4
| |
| 15 | 1nn0 9318 |
. . . . . 6
| |
| 16 | 4nn 9207 |
. . . . . 6
| |
| 17 | 15, 16 | decnncl 9530 |
. . . . 5
|
| 18 | homndx 13109 |
. . . . 5
| |
| 19 | 4nn0 9321 |
. . . . . 6
| |
| 20 | 5nn 9208 |
. . . . . 6
| |
| 21 | 4lt5 9219 |
. . . . . 6
| |
| 22 | 15, 19, 20, 21 | declt 9538 |
. . . . 5
|
| 23 | 15, 20 | decnncl 9530 |
. . . . 5
|
| 24 | ccondx 13112 |
. . . . 5
| |
| 25 | 17, 18, 22, 23, 24 | strle2g 12983 |
. . . 4
|
| 26 | 13, 14, 25 | syl2anc 411 |
. . 3
|
| 27 | 2nn0 9319 |
. . . . 5
| |
| 28 | 2lt4 9217 |
. . . . 5
| |
| 29 | 15, 27, 16, 28 | declt 9538 |
. . . 4
|
| 30 | 29 | a1i 9 |
. . 3
|
| 31 | 12, 26, 30 | strleund 12979 |
. 2
|
| 32 | 1, 31 | eqbrtrrid 4083 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-tp 3642 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 df-9 9109 df-n0 9303 df-z 9380 df-dec 9512 df-uz 9656 df-fz 10138 df-struct 12878 df-ndx 12879 df-slot 12880 df-base 12882 df-plusg 12966 df-mulr 12967 df-sca 12969 df-vsca 12970 df-ip 12971 df-tset 12972 df-ple 12973 df-ds 12975 df-hom 12977 df-cco 12978 |
| This theorem is referenced by: prdsbaslemss 13150 |
| Copyright terms: Public domain | W3C validator |