| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prdsvalstrd | Unicode version | ||
| Description: Structure product value is a structure. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| Ref | Expression |
|---|---|
| prdsvalstrd.b |
|
| prdsvalstrd.p |
|
| prdsvalstrd.m |
|
| prdsvalstrd.s |
|
| prdsvalstrd.c |
|
| prdsvalstrd.i |
|
| prdsvalstrd.t |
|
| prdsvalstrd.l |
|
| prdsvalstrd.d |
|
| prdsvalstrd.h |
|
| prdsvalstrd.x |
|
| Ref | Expression |
|---|---|
| prdsvalstrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unass 3341 |
. 2
| |
| 2 | eqid 2209 |
. . . 4
| |
| 3 | prdsvalstrd.b |
. . . 4
| |
| 4 | prdsvalstrd.p |
. . . 4
| |
| 5 | prdsvalstrd.m |
. . . 4
| |
| 6 | prdsvalstrd.s |
. . . 4
| |
| 7 | prdsvalstrd.c |
. . . 4
| |
| 8 | prdsvalstrd.i |
. . . 4
| |
| 9 | prdsvalstrd.t |
. . . 4
| |
| 10 | prdsvalstrd.l |
. . . 4
| |
| 11 | prdsvalstrd.d |
. . . 4
| |
| 12 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | imasvalstrd 13269 |
. . 3
|
| 13 | prdsvalstrd.h |
. . . 4
| |
| 14 | prdsvalstrd.x |
. . . 4
| |
| 15 | 1nn0 9353 |
. . . . . 6
| |
| 16 | 4nn 9242 |
. . . . . 6
| |
| 17 | 15, 16 | decnncl 9565 |
. . . . 5
|
| 18 | homndx 13232 |
. . . . 5
| |
| 19 | 4nn0 9356 |
. . . . . 6
| |
| 20 | 5nn 9243 |
. . . . . 6
| |
| 21 | 4lt5 9254 |
. . . . . 6
| |
| 22 | 15, 19, 20, 21 | declt 9573 |
. . . . 5
|
| 23 | 15, 20 | decnncl 9565 |
. . . . 5
|
| 24 | ccondx 13235 |
. . . . 5
| |
| 25 | 17, 18, 22, 23, 24 | strle2g 13106 |
. . . 4
|
| 26 | 13, 14, 25 | syl2anc 411 |
. . 3
|
| 27 | 2nn0 9354 |
. . . . 5
| |
| 28 | 2lt4 9252 |
. . . . 5
| |
| 29 | 15, 27, 16, 28 | declt 9573 |
. . . 4
|
| 30 | 29 | a1i 9 |
. . 3
|
| 31 | 12, 26, 30 | strleund 13102 |
. 2
|
| 32 | 1, 31 | eqbrtrrid 4098 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-tp 3654 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-9 9144 df-n0 9338 df-z 9415 df-dec 9547 df-uz 9691 df-fz 10173 df-struct 13000 df-ndx 13001 df-slot 13002 df-base 13004 df-plusg 13089 df-mulr 13090 df-sca 13092 df-vsca 13093 df-ip 13094 df-tset 13095 df-ple 13096 df-ds 13098 df-hom 13100 df-cco 13101 |
| This theorem is referenced by: prdsbaslemss 13273 |
| Copyright terms: Public domain | W3C validator |