ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prdsvalstrd Unicode version

Theorem prdsvalstrd 12973
Description: Structure product value is a structure. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
prdsvalstrd.b  |-  ( ph  ->  B  e.  V )
prdsvalstrd.p  |-  ( ph  ->  .+  e.  W )
prdsvalstrd.m  |-  ( ph  ->  .X.  e.  X )
prdsvalstrd.s  |-  ( ph  ->  S  e.  Y )
prdsvalstrd.c  |-  ( ph  ->  .x.  e.  Z )
prdsvalstrd.i  |-  ( ph  ->  .,  e.  P )
prdsvalstrd.t  |-  ( ph  ->  O  e.  Q )
prdsvalstrd.l  |-  ( ph  ->  L  e.  R )
prdsvalstrd.d  |-  ( ph  ->  D  e.  A )
prdsvalstrd.h  |-  ( ph  ->  H  e.  T )
prdsvalstrd.x  |-  ( ph  -> 
.xb  e.  U )
Assertion
Ref Expression
prdsvalstrd  |-  ( ph  ->  ( ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) , 
.,  >. } )  u.  ( { <. (TopSet ` 
ndx ) ,  O >. ,  <. ( le `  ndx ) ,  L >. , 
<. ( dist `  ndx ) ,  D >. }  u.  { <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .xb  >. } ) ) Struct  <. 1 , ; 1 5 >. )

Proof of Theorem prdsvalstrd
StepHypRef Expression
1 unass 3321 . 2  |-  ( ( ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) , 
.,  >. } )  u. 
{ <. (TopSet `  ndx ) ,  O >. , 
<. ( le `  ndx ) ,  L >. , 
<. ( dist `  ndx ) ,  D >. } )  u.  { <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .xb  >. } )  =  ( ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) , 
.,  >. } )  u.  ( { <. (TopSet ` 
ndx ) ,  O >. ,  <. ( le `  ndx ) ,  L >. , 
<. ( dist `  ndx ) ,  D >. }  u.  { <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .xb  >. } ) )
2 eqid 2196 . . . 4  |-  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) , 
.,  >. } )  u. 
{ <. (TopSet `  ndx ) ,  O >. , 
<. ( le `  ndx ) ,  L >. , 
<. ( dist `  ndx ) ,  D >. } )  =  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) , 
.,  >. } )  u. 
{ <. (TopSet `  ndx ) ,  O >. , 
<. ( le `  ndx ) ,  L >. , 
<. ( dist `  ndx ) ,  D >. } )
3 prdsvalstrd.b . . . 4  |-  ( ph  ->  B  e.  V )
4 prdsvalstrd.p . . . 4  |-  ( ph  ->  .+  e.  W )
5 prdsvalstrd.m . . . 4  |-  ( ph  ->  .X.  e.  X )
6 prdsvalstrd.s . . . 4  |-  ( ph  ->  S  e.  Y )
7 prdsvalstrd.c . . . 4  |-  ( ph  ->  .x.  e.  Z )
8 prdsvalstrd.i . . . 4  |-  ( ph  ->  .,  e.  P )
9 prdsvalstrd.t . . . 4  |-  ( ph  ->  O  e.  Q )
10 prdsvalstrd.l . . . 4  |-  ( ph  ->  L  e.  R )
11 prdsvalstrd.d . . . 4  |-  ( ph  ->  D  e.  A )
122, 3, 4, 5, 6, 7, 8, 9, 10, 11imasvalstrd 12972 . . 3  |-  ( ph  ->  ( ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) , 
.,  >. } )  u. 
{ <. (TopSet `  ndx ) ,  O >. , 
<. ( le `  ndx ) ,  L >. , 
<. ( dist `  ndx ) ,  D >. } ) Struct  <. 1 , ; 1 2 >. )
13 prdsvalstrd.h . . . 4  |-  ( ph  ->  H  e.  T )
14 prdsvalstrd.x . . . 4  |-  ( ph  -> 
.xb  e.  U )
15 1nn0 9282 . . . . . 6  |-  1  e.  NN0
16 4nn 9171 . . . . . 6  |-  4  e.  NN
1715, 16decnncl 9493 . . . . 5  |- ; 1 4  e.  NN
18 homndx 12935 . . . . 5  |-  ( Hom  `  ndx )  = ; 1 4
19 4nn0 9285 . . . . . 6  |-  4  e.  NN0
20 5nn 9172 . . . . . 6  |-  5  e.  NN
21 4lt5 9183 . . . . . 6  |-  4  <  5
2215, 19, 20, 21declt 9501 . . . . 5  |- ; 1 4  < ; 1 5
2315, 20decnncl 9493 . . . . 5  |- ; 1 5  e.  NN
24 ccondx 12938 . . . . 5  |-  (comp `  ndx )  = ; 1 5
2517, 18, 22, 23, 24strle2g 12810 . . . 4  |-  ( ( H  e.  T  /\  .xb 
e.  U )  ->  { <. ( Hom  `  ndx ) ,  H >. , 
<. (comp `  ndx ) , 
.xb  >. } Struct  <.; 1 4 , ; 1 5 >. )
2613, 14, 25syl2anc 411 . . 3  |-  ( ph  ->  { <. ( Hom  `  ndx ) ,  H >. , 
<. (comp `  ndx ) , 
.xb  >. } Struct  <.; 1 4 , ; 1 5 >. )
27 2nn0 9283 . . . . 5  |-  2  e.  NN0
28 2lt4 9181 . . . . 5  |-  2  <  4
2915, 27, 16, 28declt 9501 . . . 4  |- ; 1 2  < ; 1 4
3029a1i 9 . . 3  |-  ( ph  -> ; 1
2  < ; 1 4 )
3112, 26, 30strleund 12806 . 2  |-  ( ph  ->  ( ( ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) , 
.,  >. } )  u. 
{ <. (TopSet `  ndx ) ,  O >. , 
<. ( le `  ndx ) ,  L >. , 
<. ( dist `  ndx ) ,  D >. } )  u.  { <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .xb  >. } ) Struct  <. 1 , ; 1
5 >. )
321, 31eqbrtrrid 4070 1  |-  ( ph  ->  ( ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) , 
.,  >. } )  u.  ( { <. (TopSet ` 
ndx ) ,  O >. ,  <. ( le `  ndx ) ,  L >. , 
<. ( dist `  ndx ) ,  D >. }  u.  { <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .xb  >. } ) ) Struct  <. 1 , ; 1 5 >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167    u. cun 3155   {cpr 3624   {ctp 3625   <.cop 3626   class class class wbr 4034   ` cfv 5259   1c1 7897    < clt 8078   2c2 9058   4c4 9060   5c5 9061  ;cdc 9474   Struct cstr 12699   ndxcnx 12700   Basecbs 12703   +g cplusg 12780   .rcmulr 12781  Scalarcsca 12783   .scvsca 12784   .icip 12785  TopSetcts 12786   lecple 12787   distcds 12789   Hom chom 12791  compcco 12792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-n0 9267  df-z 9344  df-dec 9475  df-uz 9619  df-fz 10101  df-struct 12705  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-mulr 12794  df-sca 12796  df-vsca 12797  df-ip 12798  df-tset 12799  df-ple 12800  df-ds 12802  df-hom 12804  df-cco 12805
This theorem is referenced by:  prdsbaslemss  12976
  Copyright terms: Public domain W3C validator