Proof of Theorem dedekindicclemloc
Step | Hyp | Ref
| Expression |
1 | | breq2 3986 |
. . . . 5
⊢ (𝑟 = 𝑦 → (𝑥 < 𝑟 ↔ 𝑥 < 𝑦)) |
2 | | eleq1w 2227 |
. . . . . 6
⊢ (𝑟 = 𝑦 → (𝑟 ∈ 𝑈 ↔ 𝑦 ∈ 𝑈)) |
3 | 2 | orbi2d 780 |
. . . . 5
⊢ (𝑟 = 𝑦 → ((𝑥 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈) ↔ (𝑥 ∈ 𝐿 ∨ 𝑦 ∈ 𝑈))) |
4 | 1, 3 | imbi12d 233 |
. . . 4
⊢ (𝑟 = 𝑦 → ((𝑥 < 𝑟 → (𝑥 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)) ↔ (𝑥 < 𝑦 → (𝑥 ∈ 𝐿 ∨ 𝑦 ∈ 𝑈)))) |
5 | | breq1 3985 |
. . . . . . 7
⊢ (𝑞 = 𝑥 → (𝑞 < 𝑟 ↔ 𝑥 < 𝑟)) |
6 | | eleq1w 2227 |
. . . . . . . 8
⊢ (𝑞 = 𝑥 → (𝑞 ∈ 𝐿 ↔ 𝑥 ∈ 𝐿)) |
7 | 6 | orbi1d 781 |
. . . . . . 7
⊢ (𝑞 = 𝑥 → ((𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈) ↔ (𝑥 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
8 | 5, 7 | imbi12d 233 |
. . . . . 6
⊢ (𝑞 = 𝑥 → ((𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)) ↔ (𝑥 < 𝑟 → (𝑥 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)))) |
9 | 8 | ralbidv 2466 |
. . . . 5
⊢ (𝑞 = 𝑥 → (∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)) ↔ ∀𝑟 ∈ (𝐴[,]𝐵)(𝑥 < 𝑟 → (𝑥 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)))) |
10 | | dedekindicc.loc |
. . . . . 6
⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
11 | 10 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
12 | | simprl 521 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑥 ∈ (𝐴[,]𝐵)) |
13 | 9, 11, 12 | rspcdva 2835 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑥 < 𝑟 → (𝑥 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
14 | | simprr 522 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑦 ∈ (𝐴[,]𝐵)) |
15 | 4, 13, 14 | rspcdva 2835 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 < 𝑦 → (𝑥 ∈ 𝐿 ∨ 𝑦 ∈ 𝑈))) |
16 | | simpr 109 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 ∈ 𝐿) → 𝑥 ∈ 𝐿) |
17 | 5 | rexbidv 2467 |
. . . . . . . . 9
⊢ (𝑞 = 𝑥 → (∃𝑟 ∈ 𝐿 𝑞 < 𝑟 ↔ ∃𝑟 ∈ 𝐿 𝑥 < 𝑟)) |
18 | 6, 17 | bibi12d 234 |
. . . . . . . 8
⊢ (𝑞 = 𝑥 → ((𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟) ↔ (𝑥 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑥 < 𝑟))) |
19 | | dedekindicc.lr |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |
20 | 19 | ad2antrr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 ∈ 𝐿) → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |
21 | 12 | adantr 274 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 ∈ 𝐿) → 𝑥 ∈ (𝐴[,]𝐵)) |
22 | 18, 20, 21 | rspcdva 2835 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 ∈ 𝐿) → (𝑥 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑥 < 𝑟)) |
23 | 16, 22 | mpbid 146 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 ∈ 𝐿) → ∃𝑟 ∈ 𝐿 𝑥 < 𝑟) |
24 | | breq2 3986 |
. . . . . . 7
⊢ (𝑟 = 𝑧 → (𝑥 < 𝑟 ↔ 𝑥 < 𝑧)) |
25 | 24 | cbvrexv 2693 |
. . . . . 6
⊢
(∃𝑟 ∈
𝐿 𝑥 < 𝑟 ↔ ∃𝑧 ∈ 𝐿 𝑥 < 𝑧) |
26 | 23, 25 | sylib 121 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 ∈ 𝐿) → ∃𝑧 ∈ 𝐿 𝑥 < 𝑧) |
27 | 26 | ex 114 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 ∈ 𝐿 → ∃𝑧 ∈ 𝐿 𝑥 < 𝑧)) |
28 | | dedekindicc.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℝ) |
29 | 28 | ad2antrr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ 𝑈) → 𝐴 ∈ ℝ) |
30 | | dedekindicc.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℝ) |
31 | 30 | ad2antrr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ 𝑈) → 𝐵 ∈ ℝ) |
32 | | dedekindicc.lss |
. . . . . . 7
⊢ (𝜑 → 𝐿 ⊆ (𝐴[,]𝐵)) |
33 | 32 | ad2antrr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ 𝑈) → 𝐿 ⊆ (𝐴[,]𝐵)) |
34 | | dedekindicc.uss |
. . . . . . 7
⊢ (𝜑 → 𝑈 ⊆ (𝐴[,]𝐵)) |
35 | 34 | ad2antrr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ 𝑈) → 𝑈 ⊆ (𝐴[,]𝐵)) |
36 | | dedekindicc.lm |
. . . . . . 7
⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) |
37 | 36 | ad2antrr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ 𝑈) → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) |
38 | | dedekindicc.um |
. . . . . . 7
⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈) |
39 | 38 | ad2antrr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ 𝑈) → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈) |
40 | 19 | ad2antrr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ 𝑈) → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |
41 | | dedekindicc.ur |
. . . . . . 7
⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) |
42 | 41 | ad2antrr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ 𝑈) → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) |
43 | | dedekindicc.disj |
. . . . . . 7
⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) |
44 | 43 | ad2antrr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ 𝑈) → (𝐿 ∩ 𝑈) = ∅) |
45 | 10 | ad2antrr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ 𝑈) → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
46 | | simpr 109 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ 𝑈) |
47 | 29, 31, 33, 35, 37, 39, 40, 42, 44, 45, 46 | dedekindicclemuub 13244 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ 𝑈) → ∀𝑧 ∈ 𝐿 𝑧 < 𝑦) |
48 | 47 | ex 114 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑦 ∈ 𝑈 → ∀𝑧 ∈ 𝐿 𝑧 < 𝑦)) |
49 | 27, 48 | orim12d 776 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝑥 ∈ 𝐿 ∨ 𝑦 ∈ 𝑈) → (∃𝑧 ∈ 𝐿 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐿 𝑧 < 𝑦))) |
50 | 15, 49 | syld 45 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 < 𝑦 → (∃𝑧 ∈ 𝐿 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐿 𝑧 < 𝑦))) |
51 | 50 | ralrimivva 2548 |
1
⊢ (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (∃𝑧 ∈ 𝐿 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐿 𝑧 < 𝑦))) |