ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfz0add Unicode version

Theorem elfz0add 9931
Description: An element of a finite set of sequential nonnegative integers is an element of an extended finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 28-Mar-2018.) (Proof shortened by OpenAI, 25-Mar-2020.)
Assertion
Ref Expression
elfz0add  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( N  e.  ( 0 ... A )  ->  N  e.  ( 0 ... ( A  +  B ) ) ) )

Proof of Theorem elfz0add
StepHypRef Expression
1 nn0z 9098 . . . . . 6  |-  ( A  e.  NN0  ->  A  e.  ZZ )
2 uzid 9364 . . . . . 6  |-  ( A  e.  ZZ  ->  A  e.  ( ZZ>= `  A )
)
31, 2syl 14 . . . . 5  |-  ( A  e.  NN0  ->  A  e.  ( ZZ>= `  A )
)
4 id 19 . . . . 5  |-  ( B  e.  NN0  ->  B  e. 
NN0 )
53, 4anim12i 336 . . . 4  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( A  e.  (
ZZ>= `  A )  /\  B  e.  NN0 ) )
6 uzaddcl 9408 . . . 4  |-  ( ( A  e.  ( ZZ>= `  A )  /\  B  e.  NN0 )  ->  ( A  +  B )  e.  ( ZZ>= `  A )
)
75, 6syl 14 . . 3  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( A  +  B
)  e.  ( ZZ>= `  A ) )
8 fzss2 9875 . . 3  |-  ( ( A  +  B )  e.  ( ZZ>= `  A
)  ->  ( 0 ... A )  C_  ( 0 ... ( A  +  B )
) )
97, 8syl 14 . 2  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( 0 ... A
)  C_  ( 0 ... ( A  +  B ) ) )
109sseld 3101 1  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( N  e.  ( 0 ... A )  ->  N  e.  ( 0 ... ( A  +  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1481    C_ wss 3076   ` cfv 5131  (class class class)co 5782   0cc0 7644    + caddc 7647   NN0cn0 9001   ZZcz 9078   ZZ>=cuz 9350   ...cfz 9821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-fz 9822
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator