Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfz0add | GIF version |
Description: An element of a finite set of sequential nonnegative integers is an element of an extended finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 28-Mar-2018.) (Proof shortened by OpenAI, 25-Mar-2020.) |
Ref | Expression |
---|---|
elfz0add | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝑁 ∈ (0...𝐴) → 𝑁 ∈ (0...(𝐴 + 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0z 9244 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ) | |
2 | uzid 9513 | . . . . . 6 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ (ℤ≥‘𝐴)) | |
3 | 1, 2 | syl 14 | . . . . 5 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ (ℤ≥‘𝐴)) |
4 | id 19 | . . . . 5 ⊢ (𝐵 ∈ ℕ0 → 𝐵 ∈ ℕ0) | |
5 | 3, 4 | anim12i 338 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 ∈ (ℤ≥‘𝐴) ∧ 𝐵 ∈ ℕ0)) |
6 | uzaddcl 9557 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘𝐴) ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ (ℤ≥‘𝐴)) | |
7 | 5, 6 | syl 14 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ (ℤ≥‘𝐴)) |
8 | fzss2 10032 | . . 3 ⊢ ((𝐴 + 𝐵) ∈ (ℤ≥‘𝐴) → (0...𝐴) ⊆ (0...(𝐴 + 𝐵))) | |
9 | 7, 8 | syl 14 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (0...𝐴) ⊆ (0...(𝐴 + 𝐵))) |
10 | 9 | sseld 3152 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝑁 ∈ (0...𝐴) → 𝑁 ∈ (0...(𝐴 + 𝐵)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2146 ⊆ wss 3127 ‘cfv 5208 (class class class)co 5865 0cc0 7786 + caddc 7789 ℕ0cn0 9147 ℤcz 9224 ℤ≥cuz 9499 ...cfz 9977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-inn 8891 df-n0 9148 df-z 9225 df-uz 9500 df-fz 9978 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |