ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfz0add GIF version

Theorem elfz0add 10088
Description: An element of a finite set of sequential nonnegative integers is an element of an extended finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 28-Mar-2018.) (Proof shortened by OpenAI, 25-Mar-2020.)
Assertion
Ref Expression
elfz0add ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝑁 ∈ (0...𝐴) → 𝑁 ∈ (0...(𝐴 + 𝐵))))

Proof of Theorem elfz0add
StepHypRef Expression
1 nn0z 9244 . . . . . 6 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
2 uzid 9513 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ (ℤ𝐴))
31, 2syl 14 . . . . 5 (𝐴 ∈ ℕ0𝐴 ∈ (ℤ𝐴))
4 id 19 . . . . 5 (𝐵 ∈ ℕ0𝐵 ∈ ℕ0)
53, 4anim12i 338 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 ∈ (ℤ𝐴) ∧ 𝐵 ∈ ℕ0))
6 uzaddcl 9557 . . . 4 ((𝐴 ∈ (ℤ𝐴) ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ (ℤ𝐴))
75, 6syl 14 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ (ℤ𝐴))
8 fzss2 10032 . . 3 ((𝐴 + 𝐵) ∈ (ℤ𝐴) → (0...𝐴) ⊆ (0...(𝐴 + 𝐵)))
97, 8syl 14 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (0...𝐴) ⊆ (0...(𝐴 + 𝐵)))
109sseld 3152 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝑁 ∈ (0...𝐴) → 𝑁 ∈ (0...(𝐴 + 𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2146  wss 3127  cfv 5208  (class class class)co 5865  0cc0 7786   + caddc 7789  0cn0 9147  cz 9224  cuz 9499  ...cfz 9977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-inn 8891  df-n0 9148  df-z 9225  df-uz 9500  df-fz 9978
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator