| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enctlem | GIF version | ||
| Description: Lemma for enct 12990. One direction of the biconditional. (Contributed by Jim Kingdon, 23-Dec-2023.) |
| Ref | Expression |
|---|---|
| enctlem | ⊢ (𝐴 ≈ 𝐵 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oex 6560 | . . . . 5 ⊢ 1o ∈ V | |
| 2 | 1 | enref 6906 | . . . 4 ⊢ 1o ≈ 1o |
| 3 | djuen 7381 | . . . 4 ⊢ ((𝐴 ≈ 𝐵 ∧ 1o ≈ 1o) → (𝐴 ⊔ 1o) ≈ (𝐵 ⊔ 1o)) | |
| 4 | 2, 3 | mpan2 425 | . . 3 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ⊔ 1o) ≈ (𝐵 ⊔ 1o)) |
| 5 | bren 6885 | . . 3 ⊢ ((𝐴 ⊔ 1o) ≈ (𝐵 ⊔ 1o) ↔ ∃ℎ ℎ:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o)) | |
| 6 | 4, 5 | sylib 122 | . 2 ⊢ (𝐴 ≈ 𝐵 → ∃ℎ ℎ:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o)) |
| 7 | f1ofo 5575 | . . . . . 6 ⊢ (ℎ:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o) → ℎ:(𝐴 ⊔ 1o)–onto→(𝐵 ⊔ 1o)) | |
| 8 | 7 | ad2antlr 489 | . . . . 5 ⊢ (((𝐴 ≈ 𝐵 ∧ ℎ:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o)) ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) → ℎ:(𝐴 ⊔ 1o)–onto→(𝐵 ⊔ 1o)) |
| 9 | foco 5555 | . . . . . 6 ⊢ ((ℎ:(𝐴 ⊔ 1o)–onto→(𝐵 ⊔ 1o) ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) → (ℎ ∘ 𝑓):ω–onto→(𝐵 ⊔ 1o)) | |
| 10 | vex 2802 | . . . . . . . 8 ⊢ ℎ ∈ V | |
| 11 | vex 2802 | . . . . . . . 8 ⊢ 𝑓 ∈ V | |
| 12 | 10, 11 | coex 5270 | . . . . . . 7 ⊢ (ℎ ∘ 𝑓) ∈ V |
| 13 | foeq1 5540 | . . . . . . 7 ⊢ (𝑔 = (ℎ ∘ 𝑓) → (𝑔:ω–onto→(𝐵 ⊔ 1o) ↔ (ℎ ∘ 𝑓):ω–onto→(𝐵 ⊔ 1o))) | |
| 14 | 12, 13 | spcev 2898 | . . . . . 6 ⊢ ((ℎ ∘ 𝑓):ω–onto→(𝐵 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)) |
| 15 | 9, 14 | syl 14 | . . . . 5 ⊢ ((ℎ:(𝐴 ⊔ 1o)–onto→(𝐵 ⊔ 1o) ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)) |
| 16 | 8, 15 | sylancom 420 | . . . 4 ⊢ (((𝐴 ≈ 𝐵 ∧ ℎ:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o)) ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)) |
| 17 | 16 | ex 115 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ ℎ:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o)) → (𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))) |
| 18 | 17 | exlimdv 1865 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ ℎ:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o)) → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))) |
| 19 | 6, 18 | exlimddv 1945 | 1 ⊢ (𝐴 ≈ 𝐵 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∃wex 1538 class class class wbr 4082 ωcom 4679 ∘ ccom 4720 –onto→wfo 5312 –1-1-onto→wf1o 5313 1oc1o 6545 ≈ cen 6875 ⊔ cdju 7192 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-iord 4454 df-on 4456 df-suc 4459 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-1st 6276 df-2nd 6277 df-1o 6552 df-er 6670 df-en 6878 df-dju 7193 df-inl 7202 df-inr 7203 |
| This theorem is referenced by: enct 12990 |
| Copyright terms: Public domain | W3C validator |