![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > enctlem | GIF version |
Description: Lemma for enct 12590. One direction of the biconditional. (Contributed by Jim Kingdon, 23-Dec-2023.) |
Ref | Expression |
---|---|
enctlem | ⊢ (𝐴 ≈ 𝐵 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1oex 6477 | . . . . 5 ⊢ 1o ∈ V | |
2 | 1 | enref 6819 | . . . 4 ⊢ 1o ≈ 1o |
3 | djuen 7271 | . . . 4 ⊢ ((𝐴 ≈ 𝐵 ∧ 1o ≈ 1o) → (𝐴 ⊔ 1o) ≈ (𝐵 ⊔ 1o)) | |
4 | 2, 3 | mpan2 425 | . . 3 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ⊔ 1o) ≈ (𝐵 ⊔ 1o)) |
5 | bren 6801 | . . 3 ⊢ ((𝐴 ⊔ 1o) ≈ (𝐵 ⊔ 1o) ↔ ∃ℎ ℎ:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o)) | |
6 | 4, 5 | sylib 122 | . 2 ⊢ (𝐴 ≈ 𝐵 → ∃ℎ ℎ:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o)) |
7 | f1ofo 5507 | . . . . . 6 ⊢ (ℎ:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o) → ℎ:(𝐴 ⊔ 1o)–onto→(𝐵 ⊔ 1o)) | |
8 | 7 | ad2antlr 489 | . . . . 5 ⊢ (((𝐴 ≈ 𝐵 ∧ ℎ:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o)) ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) → ℎ:(𝐴 ⊔ 1o)–onto→(𝐵 ⊔ 1o)) |
9 | foco 5487 | . . . . . 6 ⊢ ((ℎ:(𝐴 ⊔ 1o)–onto→(𝐵 ⊔ 1o) ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) → (ℎ ∘ 𝑓):ω–onto→(𝐵 ⊔ 1o)) | |
10 | vex 2763 | . . . . . . . 8 ⊢ ℎ ∈ V | |
11 | vex 2763 | . . . . . . . 8 ⊢ 𝑓 ∈ V | |
12 | 10, 11 | coex 5211 | . . . . . . 7 ⊢ (ℎ ∘ 𝑓) ∈ V |
13 | foeq1 5472 | . . . . . . 7 ⊢ (𝑔 = (ℎ ∘ 𝑓) → (𝑔:ω–onto→(𝐵 ⊔ 1o) ↔ (ℎ ∘ 𝑓):ω–onto→(𝐵 ⊔ 1o))) | |
14 | 12, 13 | spcev 2855 | . . . . . 6 ⊢ ((ℎ ∘ 𝑓):ω–onto→(𝐵 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)) |
15 | 9, 14 | syl 14 | . . . . 5 ⊢ ((ℎ:(𝐴 ⊔ 1o)–onto→(𝐵 ⊔ 1o) ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)) |
16 | 8, 15 | sylancom 420 | . . . 4 ⊢ (((𝐴 ≈ 𝐵 ∧ ℎ:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o)) ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)) |
17 | 16 | ex 115 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ ℎ:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o)) → (𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))) |
18 | 17 | exlimdv 1830 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ ℎ:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o)) → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))) |
19 | 6, 18 | exlimddv 1910 | 1 ⊢ (𝐴 ≈ 𝐵 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∃wex 1503 class class class wbr 4029 ωcom 4622 ∘ ccom 4663 –onto→wfo 5252 –1-1-onto→wf1o 5253 1oc1o 6462 ≈ cen 6792 ⊔ cdju 7096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-suc 4402 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-1st 6193 df-2nd 6194 df-1o 6469 df-er 6587 df-en 6795 df-dju 7097 df-inl 7106 df-inr 7107 |
This theorem is referenced by: enct 12590 |
Copyright terms: Public domain | W3C validator |