Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > enctlem | GIF version |
Description: Lemma for enct 12366. One direction of the biconditional. (Contributed by Jim Kingdon, 23-Dec-2023.) |
Ref | Expression |
---|---|
enctlem | ⊢ (𝐴 ≈ 𝐵 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1oex 6392 | . . . . 5 ⊢ 1o ∈ V | |
2 | 1 | enref 6731 | . . . 4 ⊢ 1o ≈ 1o |
3 | djuen 7167 | . . . 4 ⊢ ((𝐴 ≈ 𝐵 ∧ 1o ≈ 1o) → (𝐴 ⊔ 1o) ≈ (𝐵 ⊔ 1o)) | |
4 | 2, 3 | mpan2 422 | . . 3 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ⊔ 1o) ≈ (𝐵 ⊔ 1o)) |
5 | bren 6713 | . . 3 ⊢ ((𝐴 ⊔ 1o) ≈ (𝐵 ⊔ 1o) ↔ ∃ℎ ℎ:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o)) | |
6 | 4, 5 | sylib 121 | . 2 ⊢ (𝐴 ≈ 𝐵 → ∃ℎ ℎ:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o)) |
7 | f1ofo 5439 | . . . . . 6 ⊢ (ℎ:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o) → ℎ:(𝐴 ⊔ 1o)–onto→(𝐵 ⊔ 1o)) | |
8 | 7 | ad2antlr 481 | . . . . 5 ⊢ (((𝐴 ≈ 𝐵 ∧ ℎ:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o)) ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) → ℎ:(𝐴 ⊔ 1o)–onto→(𝐵 ⊔ 1o)) |
9 | foco 5420 | . . . . . 6 ⊢ ((ℎ:(𝐴 ⊔ 1o)–onto→(𝐵 ⊔ 1o) ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) → (ℎ ∘ 𝑓):ω–onto→(𝐵 ⊔ 1o)) | |
10 | vex 2729 | . . . . . . . 8 ⊢ ℎ ∈ V | |
11 | vex 2729 | . . . . . . . 8 ⊢ 𝑓 ∈ V | |
12 | 10, 11 | coex 5149 | . . . . . . 7 ⊢ (ℎ ∘ 𝑓) ∈ V |
13 | foeq1 5406 | . . . . . . 7 ⊢ (𝑔 = (ℎ ∘ 𝑓) → (𝑔:ω–onto→(𝐵 ⊔ 1o) ↔ (ℎ ∘ 𝑓):ω–onto→(𝐵 ⊔ 1o))) | |
14 | 12, 13 | spcev 2821 | . . . . . 6 ⊢ ((ℎ ∘ 𝑓):ω–onto→(𝐵 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)) |
15 | 9, 14 | syl 14 | . . . . 5 ⊢ ((ℎ:(𝐴 ⊔ 1o)–onto→(𝐵 ⊔ 1o) ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)) |
16 | 8, 15 | sylancom 417 | . . . 4 ⊢ (((𝐴 ≈ 𝐵 ∧ ℎ:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o)) ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)) |
17 | 16 | ex 114 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ ℎ:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o)) → (𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))) |
18 | 17 | exlimdv 1807 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ ℎ:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o)) → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))) |
19 | 6, 18 | exlimddv 1886 | 1 ⊢ (𝐴 ≈ 𝐵 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∃wex 1480 class class class wbr 3982 ωcom 4567 ∘ ccom 4608 –onto→wfo 5186 –1-1-onto→wf1o 5187 1oc1o 6377 ≈ cen 6704 ⊔ cdju 7002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1st 6108 df-2nd 6109 df-1o 6384 df-er 6501 df-en 6707 df-dju 7003 df-inl 7012 df-inr 7013 |
This theorem is referenced by: enct 12366 |
Copyright terms: Public domain | W3C validator |