ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enctlem GIF version

Theorem enctlem 12365
Description: Lemma for enct 12366. One direction of the biconditional. (Contributed by Jim Kingdon, 23-Dec-2023.)
Assertion
Ref Expression
enctlem (𝐴𝐵 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓,𝑔
Allowed substitution hint:   𝐴(𝑔)

Proof of Theorem enctlem
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 1oex 6392 . . . . 5 1o ∈ V
21enref 6731 . . . 4 1o ≈ 1o
3 djuen 7167 . . . 4 ((𝐴𝐵 ∧ 1o ≈ 1o) → (𝐴 ⊔ 1o) ≈ (𝐵 ⊔ 1o))
42, 3mpan2 422 . . 3 (𝐴𝐵 → (𝐴 ⊔ 1o) ≈ (𝐵 ⊔ 1o))
5 bren 6713 . . 3 ((𝐴 ⊔ 1o) ≈ (𝐵 ⊔ 1o) ↔ ∃ :(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o))
64, 5sylib 121 . 2 (𝐴𝐵 → ∃ :(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o))
7 f1ofo 5439 . . . . . 6 (:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o) → :(𝐴 ⊔ 1o)–onto→(𝐵 ⊔ 1o))
87ad2antlr 481 . . . . 5 (((𝐴𝐵:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o)) ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) → :(𝐴 ⊔ 1o)–onto→(𝐵 ⊔ 1o))
9 foco 5420 . . . . . 6 ((:(𝐴 ⊔ 1o)–onto→(𝐵 ⊔ 1o) ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) → (𝑓):ω–onto→(𝐵 ⊔ 1o))
10 vex 2729 . . . . . . . 8 ∈ V
11 vex 2729 . . . . . . . 8 𝑓 ∈ V
1210, 11coex 5149 . . . . . . 7 (𝑓) ∈ V
13 foeq1 5406 . . . . . . 7 (𝑔 = (𝑓) → (𝑔:ω–onto→(𝐵 ⊔ 1o) ↔ (𝑓):ω–onto→(𝐵 ⊔ 1o)))
1412, 13spcev 2821 . . . . . 6 ((𝑓):ω–onto→(𝐵 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))
159, 14syl 14 . . . . 5 ((:(𝐴 ⊔ 1o)–onto→(𝐵 ⊔ 1o) ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))
168, 15sylancom 417 . . . 4 (((𝐴𝐵:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o)) ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))
1716ex 114 . . 3 ((𝐴𝐵:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o)) → (𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)))
1817exlimdv 1807 . 2 ((𝐴𝐵:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o)) → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)))
196, 18exlimddv 1886 1 (𝐴𝐵 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wex 1480   class class class wbr 3982  ωcom 4567  ccom 4608  ontowfo 5186  1-1-ontowf1o 5187  1oc1o 6377  cen 6704  cdju 7002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1st 6108  df-2nd 6109  df-1o 6384  df-er 6501  df-en 6707  df-dju 7003  df-inl 7012  df-inr 7013
This theorem is referenced by:  enct  12366
  Copyright terms: Public domain W3C validator