ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enctlem GIF version

Theorem enctlem 12592
Description: Lemma for enct 12593. One direction of the biconditional. (Contributed by Jim Kingdon, 23-Dec-2023.)
Assertion
Ref Expression
enctlem (𝐴𝐵 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓,𝑔
Allowed substitution hint:   𝐴(𝑔)

Proof of Theorem enctlem
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 1oex 6479 . . . . 5 1o ∈ V
21enref 6821 . . . 4 1o ≈ 1o
3 djuen 7273 . . . 4 ((𝐴𝐵 ∧ 1o ≈ 1o) → (𝐴 ⊔ 1o) ≈ (𝐵 ⊔ 1o))
42, 3mpan2 425 . . 3 (𝐴𝐵 → (𝐴 ⊔ 1o) ≈ (𝐵 ⊔ 1o))
5 bren 6803 . . 3 ((𝐴 ⊔ 1o) ≈ (𝐵 ⊔ 1o) ↔ ∃ :(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o))
64, 5sylib 122 . 2 (𝐴𝐵 → ∃ :(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o))
7 f1ofo 5508 . . . . . 6 (:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o) → :(𝐴 ⊔ 1o)–onto→(𝐵 ⊔ 1o))
87ad2antlr 489 . . . . 5 (((𝐴𝐵:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o)) ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) → :(𝐴 ⊔ 1o)–onto→(𝐵 ⊔ 1o))
9 foco 5488 . . . . . 6 ((:(𝐴 ⊔ 1o)–onto→(𝐵 ⊔ 1o) ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) → (𝑓):ω–onto→(𝐵 ⊔ 1o))
10 vex 2763 . . . . . . . 8 ∈ V
11 vex 2763 . . . . . . . 8 𝑓 ∈ V
1210, 11coex 5212 . . . . . . 7 (𝑓) ∈ V
13 foeq1 5473 . . . . . . 7 (𝑔 = (𝑓) → (𝑔:ω–onto→(𝐵 ⊔ 1o) ↔ (𝑓):ω–onto→(𝐵 ⊔ 1o)))
1412, 13spcev 2856 . . . . . 6 ((𝑓):ω–onto→(𝐵 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))
159, 14syl 14 . . . . 5 ((:(𝐴 ⊔ 1o)–onto→(𝐵 ⊔ 1o) ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))
168, 15sylancom 420 . . . 4 (((𝐴𝐵:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o)) ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))
1716ex 115 . . 3 ((𝐴𝐵:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o)) → (𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)))
1817exlimdv 1830 . 2 ((𝐴𝐵:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o)) → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)))
196, 18exlimddv 1910 1 (𝐴𝐵 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1503   class class class wbr 4030  ωcom 4623  ccom 4664  ontowfo 5253  1-1-ontowf1o 5254  1oc1o 6464  cen 6794  cdju 7098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1st 6195  df-2nd 6196  df-1o 6471  df-er 6589  df-en 6797  df-dju 7099  df-inl 7108  df-inr 7109
This theorem is referenced by:  enct  12593
  Copyright terms: Public domain W3C validator