ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enctlem GIF version

Theorem enctlem 12387
Description: Lemma for enct 12388. One direction of the biconditional. (Contributed by Jim Kingdon, 23-Dec-2023.)
Assertion
Ref Expression
enctlem (𝐴𝐵 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓,𝑔
Allowed substitution hint:   𝐴(𝑔)

Proof of Theorem enctlem
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 1oex 6403 . . . . 5 1o ∈ V
21enref 6743 . . . 4 1o ≈ 1o
3 djuen 7188 . . . 4 ((𝐴𝐵 ∧ 1o ≈ 1o) → (𝐴 ⊔ 1o) ≈ (𝐵 ⊔ 1o))
42, 3mpan2 423 . . 3 (𝐴𝐵 → (𝐴 ⊔ 1o) ≈ (𝐵 ⊔ 1o))
5 bren 6725 . . 3 ((𝐴 ⊔ 1o) ≈ (𝐵 ⊔ 1o) ↔ ∃ :(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o))
64, 5sylib 121 . 2 (𝐴𝐵 → ∃ :(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o))
7 f1ofo 5449 . . . . . 6 (:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o) → :(𝐴 ⊔ 1o)–onto→(𝐵 ⊔ 1o))
87ad2antlr 486 . . . . 5 (((𝐴𝐵:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o)) ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) → :(𝐴 ⊔ 1o)–onto→(𝐵 ⊔ 1o))
9 foco 5430 . . . . . 6 ((:(𝐴 ⊔ 1o)–onto→(𝐵 ⊔ 1o) ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) → (𝑓):ω–onto→(𝐵 ⊔ 1o))
10 vex 2733 . . . . . . . 8 ∈ V
11 vex 2733 . . . . . . . 8 𝑓 ∈ V
1210, 11coex 5156 . . . . . . 7 (𝑓) ∈ V
13 foeq1 5416 . . . . . . 7 (𝑔 = (𝑓) → (𝑔:ω–onto→(𝐵 ⊔ 1o) ↔ (𝑓):ω–onto→(𝐵 ⊔ 1o)))
1412, 13spcev 2825 . . . . . 6 ((𝑓):ω–onto→(𝐵 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))
159, 14syl 14 . . . . 5 ((:(𝐴 ⊔ 1o)–onto→(𝐵 ⊔ 1o) ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))
168, 15sylancom 418 . . . 4 (((𝐴𝐵:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o)) ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))
1716ex 114 . . 3 ((𝐴𝐵:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o)) → (𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)))
1817exlimdv 1812 . 2 ((𝐴𝐵:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o)) → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)))
196, 18exlimddv 1891 1 (𝐴𝐵 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wex 1485   class class class wbr 3989  ωcom 4574  ccom 4615  ontowfo 5196  1-1-ontowf1o 5197  1oc1o 6388  cen 6716  cdju 7014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1st 6119  df-2nd 6120  df-1o 6395  df-er 6513  df-en 6719  df-dju 7015  df-inl 7024  df-inr 7025
This theorem is referenced by:  enct  12388
  Copyright terms: Public domain W3C validator