| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enctlem | GIF version | ||
| Description: Lemma for enct 12854. One direction of the biconditional. (Contributed by Jim Kingdon, 23-Dec-2023.) |
| Ref | Expression |
|---|---|
| enctlem | ⊢ (𝐴 ≈ 𝐵 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oex 6520 | . . . . 5 ⊢ 1o ∈ V | |
| 2 | 1 | enref 6866 | . . . 4 ⊢ 1o ≈ 1o |
| 3 | djuen 7336 | . . . 4 ⊢ ((𝐴 ≈ 𝐵 ∧ 1o ≈ 1o) → (𝐴 ⊔ 1o) ≈ (𝐵 ⊔ 1o)) | |
| 4 | 2, 3 | mpan2 425 | . . 3 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ⊔ 1o) ≈ (𝐵 ⊔ 1o)) |
| 5 | bren 6845 | . . 3 ⊢ ((𝐴 ⊔ 1o) ≈ (𝐵 ⊔ 1o) ↔ ∃ℎ ℎ:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o)) | |
| 6 | 4, 5 | sylib 122 | . 2 ⊢ (𝐴 ≈ 𝐵 → ∃ℎ ℎ:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o)) |
| 7 | f1ofo 5538 | . . . . . 6 ⊢ (ℎ:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o) → ℎ:(𝐴 ⊔ 1o)–onto→(𝐵 ⊔ 1o)) | |
| 8 | 7 | ad2antlr 489 | . . . . 5 ⊢ (((𝐴 ≈ 𝐵 ∧ ℎ:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o)) ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) → ℎ:(𝐴 ⊔ 1o)–onto→(𝐵 ⊔ 1o)) |
| 9 | foco 5518 | . . . . . 6 ⊢ ((ℎ:(𝐴 ⊔ 1o)–onto→(𝐵 ⊔ 1o) ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) → (ℎ ∘ 𝑓):ω–onto→(𝐵 ⊔ 1o)) | |
| 10 | vex 2776 | . . . . . . . 8 ⊢ ℎ ∈ V | |
| 11 | vex 2776 | . . . . . . . 8 ⊢ 𝑓 ∈ V | |
| 12 | 10, 11 | coex 5234 | . . . . . . 7 ⊢ (ℎ ∘ 𝑓) ∈ V |
| 13 | foeq1 5503 | . . . . . . 7 ⊢ (𝑔 = (ℎ ∘ 𝑓) → (𝑔:ω–onto→(𝐵 ⊔ 1o) ↔ (ℎ ∘ 𝑓):ω–onto→(𝐵 ⊔ 1o))) | |
| 14 | 12, 13 | spcev 2870 | . . . . . 6 ⊢ ((ℎ ∘ 𝑓):ω–onto→(𝐵 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)) |
| 15 | 9, 14 | syl 14 | . . . . 5 ⊢ ((ℎ:(𝐴 ⊔ 1o)–onto→(𝐵 ⊔ 1o) ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)) |
| 16 | 8, 15 | sylancom 420 | . . . 4 ⊢ (((𝐴 ≈ 𝐵 ∧ ℎ:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o)) ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)) |
| 17 | 16 | ex 115 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ ℎ:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o)) → (𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))) |
| 18 | 17 | exlimdv 1843 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ ℎ:(𝐴 ⊔ 1o)–1-1-onto→(𝐵 ⊔ 1o)) → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))) |
| 19 | 6, 18 | exlimddv 1923 | 1 ⊢ (𝐴 ≈ 𝐵 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∃wex 1516 class class class wbr 4048 ωcom 4643 ∘ ccom 4684 –onto→wfo 5275 –1-1-onto→wf1o 5276 1oc1o 6505 ≈ cen 6835 ⊔ cdju 7151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-iord 4418 df-on 4420 df-suc 4423 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-1st 6236 df-2nd 6237 df-1o 6512 df-er 6630 df-en 6838 df-dju 7152 df-inl 7161 df-inr 7162 |
| This theorem is referenced by: enct 12854 |
| Copyright terms: Public domain | W3C validator |