ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fex GIF version

Theorem fex 5462
Description: If the domain of a mapping is a set, the function is a set. (Contributed by NM, 3-Oct-1999.)
Assertion
Ref Expression
fex ((𝐹:𝐴𝐵𝐴𝐶) → 𝐹 ∈ V)

Proof of Theorem fex
StepHypRef Expression
1 ffn 5112 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 fnex 5457 . 2 ((𝐹 Fn 𝐴𝐴𝐶) → 𝐹 ∈ V)
31, 2sylan 277 1 ((𝐹:𝐴𝐵𝐴𝐶) → 𝐹 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wcel 1434  Vcvv 2612   Fn wfn 4962  wf 4963
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-pow 3974  ax-pr 3999
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-id 4083  df-xp 4405  df-rel 4406  df-cnv 4407  df-co 4408  df-dm 4409  df-rn 4410  df-res 4411  df-ima 4412  df-iota 4932  df-fun 4969  df-fn 4970  df-f 4971  df-f1 4972  df-fo 4973  df-f1o 4974  df-fv 4975
This theorem is referenced by:  tfrcllembex  6053  tfrcl  6059  f1domg  6403  djudom  6692  focdmex  10028  fihashf1rn  10030  climcvg1nlem  10558
  Copyright terms: Public domain W3C validator