ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fex GIF version

Theorem fex 5803
Description: If the domain of a mapping is a set, the function is a set. (Contributed by NM, 3-Oct-1999.)
Assertion
Ref Expression
fex ((𝐹:𝐴𝐵𝐴𝐶) → 𝐹 ∈ V)

Proof of Theorem fex
StepHypRef Expression
1 ffn 5419 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 fnex 5796 . 2 ((𝐹 Fn 𝐴𝐴𝐶) → 𝐹 ∈ V)
31, 2sylan 283 1 ((𝐹:𝐴𝐵𝐴𝐶) → 𝐹 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2175  Vcvv 2771   Fn wfn 5263  wf 5264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276
This theorem is referenced by:  fexd  5804  tfrcllembex  6434  tfrcl  6440  f1domg  6835  djudom  7177  difinfsn  7184  iseqf1olemjpcl  10634  iseqf1olemfvp  10636  seq3f1olemqsum  10639  seq3f1olemstep  10640  seq3f1olemp  10641  fihashf1rn  10914  climcvg1nlem  11579  fsum3  11617  fprodseq  11813  cnfldstr  14238  cnfldcj  14245  climcncf  14974
  Copyright terms: Public domain W3C validator