Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ringidvalg | Unicode version |
Description: The value of the unity element of a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
ringidval.g | mulGrp |
ringidval.u |
Ref | Expression |
---|---|
ringidvalg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2746 | . . 3 | |
2 | df-ur 12936 | . . . . 5 mulGrp | |
3 | 2 | fveq1i 5508 | . . . 4 mulGrp |
4 | fnmgp 12927 | . . . . 5 mulGrp | |
5 | fvco2 5577 | . . . . 5 mulGrp mulGrp mulGrp | |
6 | 4, 5 | mpan 424 | . . . 4 mulGrp mulGrp |
7 | 3, 6 | eqtrid 2220 | . . 3 mulGrp |
8 | 1, 7 | syl 14 | . 2 mulGrp |
9 | ringidval.u | . 2 | |
10 | ringidval.g | . . 3 mulGrp | |
11 | 10 | fveq2i 5510 | . 2 mulGrp |
12 | 8, 9, 11 | 3eqtr4g 2233 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1353 wcel 2146 cvv 2735 ccom 4624 wfn 5203 cfv 5208 c0g 12626 mulGrpcmgp 12925 cur 12935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-inn 8891 df-2 8949 df-3 8950 df-ndx 12431 df-slot 12432 df-sets 12435 df-plusg 12505 df-mulr 12506 df-mgp 12926 df-ur 12936 |
This theorem is referenced by: dfur2g 12938 srgidcl 12952 srgidmlem 12954 issrgid 12957 srgpcomp 12966 srg1expzeq1 12971 |
Copyright terms: Public domain | W3C validator |