| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringidvalg | Unicode version | ||
| Description: The value of the unity element of a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| ringidval.g |
|
| ringidval.u |
|
| Ref | Expression |
|---|---|
| ringidvalg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2788 |
. . 3
| |
| 2 | df-ur 13837 |
. . . . 5
| |
| 3 | 2 | fveq1i 5600 |
. . . 4
|
| 4 | fnmgp 13799 |
. . . . 5
| |
| 5 | fvco2 5671 |
. . . . 5
| |
| 6 | 4, 5 | mpan 424 |
. . . 4
|
| 7 | 3, 6 | eqtrid 2252 |
. . 3
|
| 8 | 1, 7 | syl 14 |
. 2
|
| 9 | ringidval.u |
. 2
| |
| 10 | ringidval.g |
. . 3
| |
| 11 | 10 | fveq2i 5602 |
. 2
|
| 12 | 8, 9, 11 | 3eqtr4g 2265 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-inn 9072 df-2 9130 df-3 9131 df-ndx 12950 df-slot 12951 df-sets 12954 df-plusg 13037 df-mulr 13038 df-mgp 13798 df-ur 13837 |
| This theorem is referenced by: dfur2g 13839 srgidcl 13853 srgidmlem 13855 issrgid 13858 srgpcomp 13867 srg1expzeq1 13872 ringidcl 13897 ringidmlem 13899 isringid 13902 oppr1g 13959 unitsubm 13996 rngidpropdg 14023 dfrhm2 14031 isrhm2d 14042 rhm1 14044 subrgsubm 14111 issubrg3 14124 cnfldexp 14454 |
| Copyright terms: Public domain | W3C validator |