| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringidvalg | Unicode version | ||
| Description: The value of the unity element of a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| ringidval.g |
|
| ringidval.u |
|
| Ref | Expression |
|---|---|
| ringidvalg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2783 |
. . 3
| |
| 2 | df-ur 13722 |
. . . . 5
| |
| 3 | 2 | fveq1i 5577 |
. . . 4
|
| 4 | fnmgp 13684 |
. . . . 5
| |
| 5 | fvco2 5648 |
. . . . 5
| |
| 6 | 4, 5 | mpan 424 |
. . . 4
|
| 7 | 3, 6 | eqtrid 2250 |
. . 3
|
| 8 | 1, 7 | syl 14 |
. 2
|
| 9 | ringidval.u |
. 2
| |
| 10 | ringidval.g |
. . 3
| |
| 11 | 10 | fveq2i 5579 |
. 2
|
| 12 | 8, 9, 11 | 3eqtr4g 2263 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-inn 9037 df-2 9095 df-3 9096 df-ndx 12835 df-slot 12836 df-sets 12839 df-plusg 12922 df-mulr 12923 df-mgp 13683 df-ur 13722 |
| This theorem is referenced by: dfur2g 13724 srgidcl 13738 srgidmlem 13740 issrgid 13743 srgpcomp 13752 srg1expzeq1 13757 ringidcl 13782 ringidmlem 13784 isringid 13787 oppr1g 13844 unitsubm 13881 rngidpropdg 13908 dfrhm2 13916 isrhm2d 13927 rhm1 13929 subrgsubm 13996 issubrg3 14009 cnfldexp 14339 |
| Copyright terms: Public domain | W3C validator |