| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addnqprllem | Unicode version | ||
| Description: Lemma to prove downward closure in positive real addition. (Contributed by Jim Kingdon, 7-Dec-2019.) |
| Ref | Expression |
|---|---|
| addnqprllem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . . 5
| |
| 2 | ltrnqi 7547 |
. . . . . 6
| |
| 3 | ltrelnq 7491 |
. . . . . . . . . . . 12
| |
| 4 | 3 | brel 4732 |
. . . . . . . . . . 11
|
| 5 | 4 | adantl 277 |
. . . . . . . . . 10
|
| 6 | 5 | simprd 114 |
. . . . . . . . 9
|
| 7 | recclnq 7518 |
. . . . . . . . 9
| |
| 8 | 6, 7 | syl 14 |
. . . . . . . 8
|
| 9 | simplr 528 |
. . . . . . . . 9
| |
| 10 | recclnq 7518 |
. . . . . . . . 9
| |
| 11 | 9, 10 | syl 14 |
. . . . . . . 8
|
| 12 | ltmnqg 7527 |
. . . . . . . 8
| |
| 13 | 8, 11, 9, 12 | syl3anc 1250 |
. . . . . . 7
|
| 14 | ltmnqg 7527 |
. . . . . . . . 9
| |
| 15 | 14 | adantl 277 |
. . . . . . . 8
|
| 16 | mulclnq 7502 |
. . . . . . . . 9
| |
| 17 | 9, 8, 16 | syl2anc 411 |
. . . . . . . 8
|
| 18 | mulclnq 7502 |
. . . . . . . . 9
| |
| 19 | 9, 11, 18 | syl2anc 411 |
. . . . . . . 8
|
| 20 | elprnql 7607 |
. . . . . . . . 9
| |
| 21 | 20 | ad2antrr 488 |
. . . . . . . 8
|
| 22 | mulcomnqg 7509 |
. . . . . . . . 9
| |
| 23 | 22 | adantl 277 |
. . . . . . . 8
|
| 24 | 15, 17, 19, 21, 23 | caovord2d 6126 |
. . . . . . 7
|
| 25 | 13, 24 | bitrd 188 |
. . . . . 6
|
| 26 | 2, 25 | imbitrid 154 |
. . . . 5
|
| 27 | 1, 26 | mpd 13 |
. . . 4
|
| 28 | recidnq 7519 |
. . . . . . . 8
| |
| 29 | 28 | oveq1d 5969 |
. . . . . . 7
|
| 30 | 1nq 7492 |
. . . . . . . . 9
| |
| 31 | mulcomnqg 7509 |
. . . . . . . . 9
| |
| 32 | 30, 31 | mpan 424 |
. . . . . . . 8
|
| 33 | mulidnq 7515 |
. . . . . . . 8
| |
| 34 | 32, 33 | eqtrd 2239 |
. . . . . . 7
|
| 35 | 29, 34 | sylan9eqr 2261 |
. . . . . 6
|
| 36 | 35 | breq2d 4060 |
. . . . 5
|
| 37 | 21, 9, 36 | syl2anc 411 |
. . . 4
|
| 38 | 27, 37 | mpbid 147 |
. . 3
|
| 39 | prcdnql 7610 |
. . . 4
| |
| 40 | 39 | ad2antrr 488 |
. . 3
|
| 41 | 38, 40 | mpd 13 |
. 2
|
| 42 | 41 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-eprel 4341 df-id 4345 df-iord 4418 df-on 4420 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-recs 6401 df-irdg 6466 df-1o 6512 df-oadd 6516 df-omul 6517 df-er 6630 df-ec 6632 df-qs 6636 df-ni 7430 df-mi 7432 df-lti 7433 df-mpq 7471 df-enq 7473 df-nqqs 7474 df-mqqs 7476 df-1nqqs 7477 df-rq 7478 df-ltnqqs 7479 df-inp 7592 |
| This theorem is referenced by: addnqprl 7655 |
| Copyright terms: Public domain | W3C validator |